On the lower bound of the Gauss curvature of a strictly convex closed surface

Authors

  • V. I. Babenko

DOI:

https://doi.org/10.15407/dopovidi2015.03.007

Keywords:

convex surface, Gauss curvature

Abstract

The lower bound for the Gauss curvature on a strictly convex closed surface by its two integral parameters (width and radius of the circumscribed ball) are obtained.

Downloads

References

Pohorelov A. V. Bending of surfaces and stability of shells, Mosow: Nauka, 1986 (in Russian).

Babenko V. I. Dopov. Nac. akad. nauk Ukr., 1993, 7: 46–49 (in Russian).

Babenko V. I. Dopov. Nac. akad. nauk Ukr., 2009, 3: 7–11 (in Russian).

Rashevskii P. K. Differential Geometry course, Moscow: Gostekhizdat, 1956 (in Russian).

Bliashke V. Circle and ball, Moscow: Nauka, 1967 (in Russian).

Yanke E., Emde F. Table functions with formulas and curves, Moscow: Fizmathiz, 1959 (in Russian).

Published

21.01.2025

How to Cite

Babenko, V. I. (2025). On the lower bound of the Gauss curvature of a strictly convex closed surface . Reports of the National Academy of Sciences of Ukraine, (3), 7–10. https://doi.org/10.15407/dopovidi2015.03.007