About solving the Korteweg–de Vries equation with step-like initial data

Authors

  • Z.M. Gladka

DOI:

https://doi.org/10.15407/dopovidi2015.02.007

Keywords:

Cauchy problem, decrease of solutions, Korteweg–de Vries equation, smoothness of the potential

Abstract

The solvability of a Cauchy problem for the Korteweg–de Vries equation is established, and the rate of decrease of solutions as a function of the smoothness of the potential is found.

Downloads

Download data is not yet available.

References

Marchenko V. A. The inverse scattering problem and its applications to NLPDE In: Scattering and Inverse Scattering in Pure and Applied Science (Ed. by R. Pike, P. Sabatier., San Diego: Academic Press), 2002:1695–1706. DOI: https://doi.org/10.1016/b978-012613760-6/50094-2

Kruzhkov S. N., Faminskii A. V. Matem. sb., 1983, 120(162), No 3: 396–425 (in Russian).

Kappeler T. J. Different. Equat., 1986, 63, No 3: 306–331.

Egorova I., Teschl G. J. Anal. Math., 2011, 115: 71–101. DOI: https://doi.org/10.1007/s11854-011-0024-9

Buslaev V. S., Fomin V. N. Vestn. Leningr. Univ.,1962, 17, No 1: 56–64.

Cohen A., Kappeler T. Indiana Univ. Math. J., 1985, 34, No 1: 127–180. DOI: https://doi.org/10.1512/iumj.1985.34.34008

Marchenko V. A. Sturm–Liouville operators and applications, Basel: Birkhauser, 1986. DOI: https://doi.org/10.1007/978-3-0348-5485-6

Egorova I., Gladka Z., Lange T.-L., Teschl G. On the inverse scattering transform method for the Korteweg–de Vries equation with steplike initial data. University of Vienna, Prepr., Wien, 2014.

Khruslov E. Ya. Matem. sb., 1976, 99, No 2: 261–281 (in Russian).

Gladka Z.M. Reports of the National Academy of Sciences of Ukraine, 2014, 9: 7–12 (in Russian). DOI: https://doi.org/10.15407/dopovidi2014.09.007

Published

08.01.2025

How to Cite

Gladka, Z. (2025). About solving the Korteweg–de Vries equation with step-like initial data . Reports of the National Academy of Sciences of Ukraine, (2), 7–13. https://doi.org/10.15407/dopovidi2015.02.007