About solving the Korteweg–de Vries equation with step-like initial data
DOI:
https://doi.org/10.15407/dopovidi2015.02.007Keywords:
Cauchy problem, decrease of solutions, Korteweg–de Vries equation, smoothness of the potentialAbstract
The solvability of a Cauchy problem for the Korteweg–de Vries equation is established, and the rate of decrease of solutions as a function of the smoothness of the potential is found.
Downloads
References
Marchenko V. A. The inverse scattering problem and its applications to NLPDE In: Scattering and Inverse Scattering in Pure and Applied Science (Ed. by R. Pike, P. Sabatier., San Diego: Academic Press), 2002:1695–1706. DOI: https://doi.org/10.1016/b978-012613760-6/50094-2
Kruzhkov S. N., Faminskii A. V. Matem. sb., 1983, 120(162), No 3: 396–425 (in Russian).
Kappeler T. J. Different. Equat., 1986, 63, No 3: 306–331.
Egorova I., Teschl G. J. Anal. Math., 2011, 115: 71–101. DOI: https://doi.org/10.1007/s11854-011-0024-9
Buslaev V. S., Fomin V. N. Vestn. Leningr. Univ.,1962, 17, No 1: 56–64.
Cohen A., Kappeler T. Indiana Univ. Math. J., 1985, 34, No 1: 127–180. DOI: https://doi.org/10.1512/iumj.1985.34.34008
Marchenko V. A. Sturm–Liouville operators and applications, Basel: Birkhauser, 1986. DOI: https://doi.org/10.1007/978-3-0348-5485-6
Egorova I., Gladka Z., Lange T.-L., Teschl G. On the inverse scattering transform method for the Korteweg–de Vries equation with steplike initial data. University of Vienna, Prepr., Wien, 2014.
Khruslov E. Ya. Matem. sb., 1976, 99, No 2: 261–281 (in Russian).
Gladka Z.M. Reports of the National Academy of Sciences of Ukraine, 2014, 9: 7–12 (in Russian). DOI: https://doi.org/10.15407/dopovidi2014.09.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.