On some "minimal" Leibniz algebras
DOI:
https://doi.org/10.15407/dopovidi2016.11.005Keywords:
cyclic algebra, Leibniz algebra, Lie algebraAbstract
The description of the Leibniz algebras, whose proper subalgebras are Lie algebras, and the Leibniz algebras, whose proper subalgebras are Abelian, is obtained.
Downloads
References
Bloh A.M. Soviet Math. Dokl., 1965, 6: 1450—1452.
Bloh A.M. Soviet Math. Dokl., 1967, 8: 824—826.
Bloh A.M. Algebra and number theory. Uchenye Zapiski Moskov. Gos. Pedagog. Inst., 1971, 375: 9—20 (in Russian).
Loday J.L. Enseign. Math, 1993, 39: 269—293.
Loday J.L., Pirashvili T. Math. Ann., 1993, 296: 139—158. doi: https://doi.org/10.1007/BF01445099
Frabetti A. J. Pure Appl. Algebra, 1998, 129: 123—141. doi: https://doi.org/10.1016/S0022-4049(97)00066-2
Casas J.M., Pirashvili T. J. Algebra, 2000, 231: 258—264. doi: https://doi.org/10.1006/jabr.1999.8364
Kurdachenko L.A., Otal J., Pypka A.A. European Journal of Mathematics, 2016, 2: 565. doi: https://doi.org/10.1007/s40879-016-0093-5
Stitzinger E.L. Proc. Amer. Math. Soc., 1971, 28: 47—49. doi: https://doi.org/10.1090/S0002-9939-1971-0271178-X
Gein A.G., Kuznetsov S.V., Mukhin Yu.N. Mat. Zapiski Uralsk. Gos. Univ., 1972, 8, No 3: 18—27 (in Russian).
Towers D.A. Lin. Algebra Appl., 1980, 32: 61—73. doi: https://doi.org/10.1016/0024-3795(80)90007-5
Farnsteiner R. Pacific J. Math., 1984, 111: 287—299. doi: https://doi.org/10.2140/pjm.1984.111.287
Gein A.G. Commun. Algebra, 1985, 13: 305—328. doi: https://doi.org/10.1080/00927878508823161
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.