Low-molecular protectors in salicylate-deficient plants of Arabidopsis thaliana under influence of salt stress
DOI:
https://doi.org/10.15407/dopovidi2016.06.120Keywords:
anthocyanins, Arabidopsis thaliana, proline, salicylic acid, salt stress, transformants NahGAbstract
The responses to the salt stress (200 mM NaCl, 24 h) of Arabidopsis thaliana plants of wild type (Col-0) and those transformed with the gene of bacterial salicylate hydroxylase (NahG), which have lower content of salicylic acid, have been compared. After the salt stress, the growth of wild type plants was considerably inhibited, while its effect on the growth of NahG transformants was weakly expressed. After the salt stress in the leaves of plants of both genotypes, the contents of chlorophyll and carotinoids were decreased; however, in NahG plants, the changes of the contents of photosynthetic pigments were less revealed than in wild type plants. In response to the NaCl stress, the increase of the proline content in leaves of wild type plants was more essential in comparison with that in salicylate-deficient transformants. At the same time, the contents of carbohydrates and anthocyanins in leaves of NahG plants in response to the salt stress were increased, and those in the wild-type plants were decreased. The conclusion is made about the distinctions in the contributions of low-molecular protective compounds in adaptation of Arabidopsis plants of the wild type and those transformed with the bacterial gene of salicylate hydroxylase to the salt stress.
Downloads
References
Alvarez M. E. Plant Mol. Biol., 2000, 44, No 3: 429–442. https://doi.org/10.1023/A:1026561029533
Clarke S. M., Mur L. A. J., Wood J. E., Scott I. M. Plant J., 2004, 38, No 3: 432–447. https://doi.org/10.1111/j.1365-313X.2004.02054.x
Kolupaev Yu. E., Yastreb T. O., Shvidenko N. V., Karpets Yu. V. Appl. Biochem. Microbiol., 2012, 48, No 5: 500–505. https://doi.org/10.1134/S0003683812050055
Palma F., Lluch C., Iribarne C., García-Garrido J. M., García N. A. T. Plant Growth Regul., 2009, 58, No 3: 307–316. https://doi.org/10.1007/s10725-009-9380-1
Borsani O., Valpuesta V., Botella M. A. Plant Physiol., 2001, 126, No 3: 1024–1030. https://doi.org/10.1104/pp.126.3.1024
He Q., Zhao S., Ma Q., Zhang Y., Huang L., Li G., Hao L. J. Plant Growth Regul., 2014, 33, No 4: 871–880. https://doi.org/10.1007/s00344-014-9438-9
Wendehenne D., Durner J., Chen Z., Klessig D. F. Phytochemistry, 1998, 47, No 4: 651–657. https://doi.org/10.1016/S0031-9422(97)00604-3
Cao Y., Zhan Z. W., Xue L. W., Du J. B., Shang J., Xu F., Yuan S., Lin H. H. Z. Naturforsch., 2009, 64, No 3–4: 231–238.
Sharma Y. K., Leon J., Raskin I., Davis K. R. Proc. Natl. Acad. Sci. USA, 1996, 93, No 10: 5099–5104. https://doi.org/10.1073/pnas.93.10.5099
Carcia A. B., Engler J. A., Iyer S., Gerats T., Van Montagu M., Caplan A. B. Plant Physiol., 1997, 115, No 1: 159–169. https://doi.org/10.1104/pp.115.1.159
Neill S. O., Gould K. S. Functional Plant Biol., 2003, 30, No 8: 865–873. https://doi.org/10.1071/FP03118
Kavi Kishor P. B., Sreenivasulu N. Plant Cell Environ., 2014, 37, No 2: 300–311. https://doi.org/10.1111/pce.12157
Gibeaut D. M., Hulett J., Cramer G. R., Seemann J. R. Plant Physiol., 1997, 115, No 2: 317–319. https://doi.org/10.1104/pp.115.2.317
Kolupaev Yu. E., Ryabchun N. I., Vayner A. A., Yastreb T. O., Oboznyi A. I. Russ. J. Plant Physiol., 2015, 62, No 4: 499–506. https://doi.org/10.1134/S1021443715030115
Nogues S., Baker N. R. J. Exp. Bot., 2000, 51, No 348: 1309–1317.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.