Low-molecular protectors in salicylate-deficient plants of Arabidopsis thaliana under influence of salt stress

Authors

  • T. O. Yastreb V. V. Dokuchaev National Agrarian University of Kharkiv
  • Yu. E. Kolupaev V. V. Dokuchaev National Agrarian University of Kharkiv
  • A. I. Obozniy V. V. Dokuchaev National Agrarian University of Kharkiv
  • Yu. V. Karpets V. V. Dokuchaev National Agrarian University of Kharkiv
  • A.P. Dmitriev Institute of Cell Biology and Genetic Engeneering of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.06.120

Keywords:

anthocyanins, Arabidopsis thaliana, proline, salicylic acid, salt stress, transformants NahG

Abstract

The responses to the salt stress (200 mM NaCl, 24 h) of Arabidopsis thaliana plants of wild type (Col-0) and those transformed with the gene of bacterial salicylate hydroxylase (NahG), which have lower content of salicylic acid, have been compared. After the salt stress, the growth of wild type plants was considerably inhibited, while its effect on the growth of NahG transformants was weakly expressed. After the salt stress in the leaves of plants of both genotypes, the contents of chlorophyll and carotinoids were decreased; however, in NahG plants, the changes of the contents of photosynthetic pigments were less revealed than in wild type plants. In response to the NaCl stress, the increase of the proline content in leaves of wild type plants was more essential in comparison with that in salicylate-deficient transformants. At the same time, the contents of carbohydrates and anthocyanins in leaves of NahG plants in response to the salt stress were increased, and those in the wild-type plants were decreased. The conclusion is made about the distinctions in the contributions of low-molecular protective compounds in adaptation of Arabidopsis plants of the wild type and those transformed with the bacterial gene of salicylate hydroxylase to the salt stress.

Downloads

Download data is not yet available.

References

Alvarez M. E. Plant Mol. Biol., 2000, 44, No 3: 429–442. https://doi.org/10.1023/A:1026561029533

Clarke S. M., Mur L. A. J., Wood J. E., Scott I. M. Plant J., 2004, 38, No 3: 432–447. https://doi.org/10.1111/j.1365-313X.2004.02054.x

Kolupaev Yu. E., Yastreb T. O., Shvidenko N. V., Karpets Yu. V. Appl. Biochem. Microbiol., 2012, 48, No 5: 500–505. https://doi.org/10.1134/S0003683812050055

Palma F., Lluch C., Iribarne C., García-Garrido J. M., García N. A. T. Plant Growth Regul., 2009, 58, No 3: 307–316. https://doi.org/10.1007/s10725-009-9380-1

Borsani O., Valpuesta V., Botella M. A. Plant Physiol., 2001, 126, No 3: 1024–1030. https://doi.org/10.1104/pp.126.3.1024

He Q., Zhao S., Ma Q., Zhang Y., Huang L., Li G., Hao L. J. Plant Growth Regul., 2014, 33, No 4: 871–880. https://doi.org/10.1007/s00344-014-9438-9

Wendehenne D., Durner J., Chen Z., Klessig D. F. Phytochemistry, 1998, 47, No 4: 651–657. https://doi.org/10.1016/S0031-9422(97)00604-3

Cao Y., Zhan Z. W., Xue L. W., Du J. B., Shang J., Xu F., Yuan S., Lin H. H. Z. Naturforsch., 2009, 64, No 3–4: 231–238.

Sharma Y. K., Leon J., Raskin I., Davis K. R. Proc. Natl. Acad. Sci. USA, 1996, 93, No 10: 5099–5104. https://doi.org/10.1073/pnas.93.10.5099

Carcia A. B., Engler J. A., Iyer S., Gerats T., Van Montagu M., Caplan A. B. Plant Physiol., 1997, 115, No 1: 159–169. https://doi.org/10.1104/pp.115.1.159

Neill S. O., Gould K. S. Functional Plant Biol., 2003, 30, No 8: 865–873. https://doi.org/10.1071/FP03118

Kavi Kishor P. B., Sreenivasulu N. Plant Cell Environ., 2014, 37, No 2: 300–311. https://doi.org/10.1111/pce.12157

Gibeaut D. M., Hulett J., Cramer G. R., Seemann J. R. Plant Physiol., 1997, 115, No 2: 317–319. https://doi.org/10.1104/pp.115.2.317

Kolupaev Yu. E., Ryabchun N. I., Vayner A. A., Yastreb T. O., Oboznyi A. I. Russ. J. Plant Physiol., 2015, 62, No 4: 499–506. https://doi.org/10.1134/S1021443715030115

Nogues S., Baker N. R. J. Exp. Bot., 2000, 51, No 348: 1309–1317.

Published

03.11.2024

How to Cite

Yastreb, T. O., Kolupaev, Y. E., Obozniy, A. I., Karpets, Y. V., & Dmitriev, A. (2024). Low-molecular protectors in salicylate-deficient plants of Arabidopsis thaliana under influence of salt stress . Reports of the National Academy of Sciences of Ukraine, (6), 120–126. https://doi.org/10.15407/dopovidi2016.06.120