doi: https://doi.org/10.15407 /dopovidi2017.09.020
UDC 517.5

V.I. Ryazanov, S.V. Volkov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
E-mail: vl.ryazanov1@gmail.com, serhii.volkov@donntu.edu.ua

Prime ends on the Riemann surfaces
Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii

We prove criteria for the homeomorphic extension of mappings with finite distortion between the domains on Riemann
surfaces to the boundary by prime Carathéodory ends.

Keywords: Riemann surfaces, prime Carathéodory ends, homeomorphic extension, boundary behavior, mappings of
[inite distortion, Sobolev mappings.

The theory of the boundary behavior in the prime ends for the mappings with finite distortion
has been developed in [1] and [2] for the plane domains and in [3] for the spatial domains. The
pointwise boundary behavior of the mappings with finite distortion in regular domains on Rie-
mann surfaces was recently studied by us in [4]. Moreover, the problem was investigated in re-
gular domains on the Riemann manifolds for n>3 as well as in metric spaces, see, e. g., [5]. For
basic definitions and notations, discussions, and historic comments in the mapping theory on
Riemann surfaces, see our previous papers [4, 6, 7].

1. Definition of the prime ends and preliminary remarks. We act similarly to Carathéodory
under the definition of the prime ends of domains on a Riemann surface S, see Chapter 9 in [8].
First of all, recall that a continuous mapping 6:1 —S, I=(0,1), is called a_Jordan arc in S if
o(ty) #o(ty) for t; #t,. We also use the notations 6,5, and do for o(I), o(I), and o(I)\ o(]),
correspondingly. A Jordan arc ¢ in a domain D cS is called a cross-cut of the domain D if o
splits D ,i.e. D\ 6 has more than one (connected) component, do6 cdD , and G is a compact
setin S.

A sequence Gy,...,G,,,... of cross-cuts of D is called a chain in D if:

(i) 6,nG; =@ forevery i#j, i,j=12..;

(ii) o, splits D into 2 domains, one of which contains ©,,,,, and another one contains &,, 4
for every m>1;

(iii) &(c,,) >0 as m — co.

Here, 8(E)= sup Es(pp P2) denotes the diameter of a set E in S with respect to an arbitrary

P, prE
metric 6 in S agreed with its topology, see [4, 5].
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Correspondingly to the definition, a chain of cross-cuts ©,, generates a sequence of do-
mains d,, ¢ D such that d,>dy>...0d, >... and Dndd, =c,. Two chains of cross-cuts
{0,,} and {o}} are called equivalent if, for every m=1,2,..., the domain d,, contains all do-
mains dj, except a finite number, and, for every k=1,2,..., the domain dj, contains all domains
d,, except a finite number, too. A prime end P of the domain D is an equivalence class of chains
of cross-cuts of D .

Here, Ep, will denote the collection of all prime ends of a domain D and l_)p =DUEp isits
completion by prime ends. A basis of neighborhoods of a prime end P of D can be defined in the
following way. Let d be an arbitrary domain from a chain in P. Denote, by d”, the union of d and
all prime ends of D having some chains in d. Just all such " form a basis of open neighborhoods
of the prime end P. The corresponding topology on Dp is called the topology of prime ends.

Later on, we everywhere apply the following conditions A:

Let S and S’ be Riemann surfaces, D and D’ be domains in S and S, correspondingly,
oD cS and oD’ c S’ have finite collections of nondegenerate components, and let f:D— D’
be a homeomorphism of finite distortion with K, € L.

The base for our research is the following, see Lemma 7.1 in [9] or Theorem 2 in [10].

Lemma A. Under conditions A, suppose that

[ Ky} ceo (hp. po)) dh(p) = oI} o (£)), ¥ pyedD (1)
R(po,e,eo)

ase—0 forall ey <8(py), where R(py, €, €y)={pe S:e<h(p, py)<e,} and Yoy 6,6, () (0,00) >
—[0, ], €€ (0,&), is a family of measurable functions such that

€0

O<Ip()’80 (8) = J‘WPO’S'EO (t) dt <o, Vee (0, 80) .
€

Then f can be extended to a homeomorphism f of Dp onto Dj.

2. On the extension to the boundary by prime ends. We assume in this section that the
function K is extended by zero outside of D .

Theorem 1. Under conditions A, suppose in addition that

‘0 dr
———————=00, Vpy€dD, €,<d(py), (2)
‘([HKfH(Po,T) ! 0
where
K, [(pory= [ Kp(p)dsy(p). 3)
S(py,1)

Then f can be extended to a homeomorphism | of Dp onto Dj.
Here, S(p,,r) denotes the circle {pe S:h(p, py)=r}.
Proof. Indeed, for the functions

1/||I<f ||(p0vt)a tE(O,So),
= 4
\lfpo,so(t) {0’ fe feg, %), (4)
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we have, by the Fubini theorem, that

80 d
[ Kiowp, e, (o, po))dh(p)= J %] (5)

_a
R(py,&.€p) |(p0,7")

where R(py, ¢, €y) denotes the ring {pe S:e<h(p, py)<g,} and, consequently, condition (1)
holds by (2) for all p, € 0D and g; € (0,e(py)).

Here, we have used the standard conventions in the integral theory that a /=0 for a # oo
and 0-=0.

Thus, Theorem 1 follows immediately from Lemma A.

Corollary 1. In particular, the conclusion of Theorem 1 holds if

1
kl’o (r):O(log;), Vpy €dD, (6)

as r — 0, where kpo (r) is the average of K ; over the infinitesimal circle S(py, 7).

Choosing y(t):= in (1), we obtain, by Lemma A, the next result, see also Lemma 4.1

1
tlogl/t
in [11] or Lemma 13.2 in [12].

Theorem 2. Under conditions A, let K ; have a dominant Q,, in a neighborhood of every point
o € 0D with finite mean oscillation at p. Then f can be extended to a homeomorphism f : D, — D),

By Corollary 4.1 in [11] or Corollary 13.3 in [12], we obtain the following.

Corollary 2. In particular, the conclusion of Theorem 2 holds if

lim | Kq(p)dh(p)<e, VpyedD, )
8_)0D(p0,£)

where D(py, €) is the infinitesimal disk {pe S :h(p, py) <€y}-

Corollary 3. The conclusion of Theorem 2 holds if every point p,€ oD is a Lebesgue point of
the function K orits dominant Q, .

The next statement also follows from Lemma A under the choice y(¢)=1/¢.

Theorem 3. Under conditions A, let, for some €, >0,

2
J Kf(p)Lm)zo(l:logﬂJ as €0 VY p,eadD. (8)

2
€<l’l(py po )<€0 h p’ pO

Then [ can be extended to a homeomorphism of l_)p onto 5;9.
Remark 1. Choosing the function y(¢) =1/(¢log1/t) in Lemma A instead of w(¢)=1/t,(8)
can be replaced by the weaker condition

2
| K (pydh(p) g =o[[1oglog1] J (9)
e<h(p, po)<e 1 &
: o(mp,po)log

h(p’ pO)
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and (6) by the condition
k, (r)= o(loglloglogl) ) (10)
0 r r

Of course, we could give here the whole scale of corresponding conditions of the logarithmic
type, by using suitable functions y(¢) .

3. The final remarks. Theorem 1 has a number of other consequences thanking to Theo-
rem 8.11in [9].

Theorem 4. Under conditions A, let

[ @, (Ki(p)dh(p)<=, Vp,edD (11)
D(py.g¢)

Jor ey =¢&(py) and a nondecreasing convex function ® 2o :10,00) =0, ) with
T v
] -

10 20 (1)

oo (12)
5(170)

Jfor 8(py)> @ 2(0)- Then [ is extended to a homeomorphism of l_)p onto l_);).

Proof. Indeed, in the case of hyperbolic Riemann surfaces, (11) and (12) imply (2) by Theorem
8.1 in [9]. After this, Theorem 4 becomes a direct consequence of Theorem 1. In the simpler case
of elliptic and parabolic Riemann surfaces, we can apply similarly Theorem 3.1 in [13] for the
Euclidean plane instead of Theorem 8.1 in [9].
Corollary 4. In particular, the conclusion of Theorem 4 holds if
TP dh(py <o pyeaD (13)
D(py,€q)

for some gy =¢e(py) >0 and a5 =0a(py)>0.

Remark 2. Note that, by Theorem 5.1 and Remark 5.1 in [14], condition (12) is not only
sufficient but also necessary for a continuous extendability of all mappings f with the integral
restriction (11) to the boundary.

Note also that, by Theorem 2.1 in [13], see also Proposition 2.3 in [15], (12) is equivalent to
every of the conditions from the following series:

[ 1, 0% = 5p)>0, (14)
0 t
5(}70)
[ MmO 50 (15)
5(}70)
T dt
[ Hyy 5= 8(py)>0, (16)
t
5(]90)
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A(py) 1

g Hpo(szt:oo, Apy) >0, (17)

=

| === 8.(py)>H, (0), (18)
-1 P

5*(}7()) HPO (n) 0

where
H, ()=1og®, (). (19)

Here, the integral in (15) is understood as the Lebesgue—Stieltjes integral, and the integrals
in (14) and (16)—(18) as the ordinary Lebesgue integrals.

It is necessary to give one more explanation. From the right-hand sides in conditions (14)—(18),
we have in mind +e . If ®, ()=0 for te[0,¢,(py)], then H, (t)=—e for te[0,¢,(py)], and
we complete the definition H;Ho (t)=0 for te[0,¢,(py)]. Note that conditions (15) and (16)
exclude that ¢,(p,) belongs to the interval of integrability, because, in the contrary case, the left-
hand sides in (15) and (16) are either equal to —eo or indeterminate. Hence, we may assume in
(14)—(17) that 8( py ) > t,, correspondingly, A(py) <1/t(py), wheret(py):= sup ¢sett(py)=0
it ® 2,(0)>0. Dy (D=0

The most interesting among the above conditions is (16), i.e. the condition:

j 1ogq>p0(t) = +oo for some 8(py) > 0. (20)
5(]70)

Finally, we note that the restriction on the nondegeneracy of boundary components of
domains in conditions A is not essential, because this simplest case is included in our previous

paper [4].
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