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We study functions of the finite mean oscillation in Finsler spaces with respect to the boundary behavior of ring Q-ho-
meomorphisms.
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In this article, we continue our study of mappings on Finsler manifolds (M", @) started in [1].
For historical remarks, we refer to [2]. Recall some needed definitions. By a domain in the topo-
logical space T, we mean an open linearly connected set. A domain D is called locally connected
at a point x,€ d D, if, for any neighborhood U of x, there is a neighborhood V c U of x, such
that VN D is connected (cf. [3]). Similarly, we say that a domain D is locally linearly connected at
a point xy€ d D if, for any neighborhood U of x, there exists a neighborhood V c U of x;, such
that VN D is linearly connected. Recall that the n-dimensional topological manifold M™ means
a Hausdorff topological space with countable base such that every point has a neighborhood ho-
meomorphic to R”. The manifold of the class C” with » >1 is called smooth.

Let D denote a domain in the Finsler space (M",®), n>2, and let TM" =UT . M" be a
tangent bundle of (M",®), Vx e M" . By a Finsler manifold (M",®), n> 2, we mean a smooth
manifold of the class C* with defined Finsler structure @(x, &), where @(x,&) :TM" - R" isa
function satisfying the following conditions:

1) @eC” (TM"\{0});
2) Ya>0 hold @(x,a€)=a @ (x,&) and @(x,E)>0 for E=0;

2792
3) the nxn Hessian matrix g;i (v, g):%a ?g;gv &)
TM" \ {0} (cf. [4]). m

By the geodesic distance dg(x,y), we mean the infimum of lengths of piecewise-smooth
curves joining x and y in (M", @), n> 2. It is well known that, for such metric, only two axioms
of metric spaces hold, namely the identity and triangle inequality axioms. Therefore, the Finsler
manifold provides a quasimetric space, for which the symmetry axiom fails.

is positive definite at every point of

© E.S. Afanas'eva, 2017
14 ISSN 1025-6415. Dopoo. Nac. acad. nauk Ukr. 2017. Ne 3



Finite mean oscillation on Finsler manifolds

Remark 1. Later, we consider a Finsler structure of the type

B, &)=%<(D<x, E)+D(x,-E)),

thereby obtaining a Finsler manifold (M", @) with symmetrized (reversible) function @ . Clear-
ly, if @ is reversible, then the induced distance function d 5 isreversible, ie., d 3 (x, y)=d 3 (y, x),
for all pairs of points x,ye M", see [5]. It is also known that the reversible Finsler metric coin-
cides with the Riemannian one, see, e.g., [6]. Therefore, in our further discussion, we can rely on
the results of [2].

Later, y:[a,b] > M" is a piecewise-smooth curve, and x (¢) is its parametrization. An element
of length in (M",®), n>2, is defined as a differential of the path for an infinitesimal measured
part of a curve ye D by

n
2
dsg = Y, g;(x,&)dn; dn;;
ij=1
see, e.g., [7]. So, the distance ds@ in the Finsler space, as in the case of a Riemannian space, is
determined by a metric tensor. Using the quadratic form dsg, we determine the length of yc D

by

&
se (V)= st@ = J@(x, dx)dt,
Y 4
see, e.g., [8,9]. The invariance of this integral requires above-given restrictions 2—3 on the Lagran-
gian @ (x,dx).
Following [10], in view of Remark 1, an element of volume on the Finsler manifold is defined

by dogz(x)=/detg;(x,§) dr!...dx™. Tt is known that the volume in the Finsler space coincides
with its Hausdorff measure induced by the metric dg (x, y), it @(x,§) is an invertible function,
see, e.g., [5].

Let T be a family of curves in a domain D. By the family of curves ', we mean a fixed set of
curves v, and, for an arbitrary mapping f:M" — M?, f(T):={f oy|ye T'}. The modulus of the
family I is defined by

M(l“)::pei;}il;Ilr j p" (x)dog(x),
D

where the infimum is taken over all nonnegative Borel functions p such that the condition

[p® (x,dx) =] pdsg >1
v Y

holds for any curve y e I . The functions p satistying this condition are called admissible for T, cf. [4].

Later, for sets A, B, and C from (M", Cf)), n>2, by A(A, B;C), we denote a set of all curves
v:[a, b] - M", which join A and Bin C,i.e. y(a)e A, y(b)e B, and y(¢t)eC forall t e(a,b).

By Remark 1, one can apply the following well-known facts: Proposition 1 and Remark 1 in
[2]. Thus, we assume that the geodesic spheres S (x,7), geodesic balls B(x,,7), and geodesic
rings A= A(xy,n, ) lie in a normal neighborhood of the point x;, .

Let D and D’ be domains on the Finsler manifolds (M", @) and (M?,®,), n> 2, respective-
ly,and let Q : M"™ — (0,20) be a measurable function. We say that a homeomorphism f:D— D" is
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the ring Q-homeomorphism at a point x, € D, if

M), D) < [ Q@) (d(x, 1)) dp(x) (1)
AnD
holds for any geodesic ring A= A(x,¢,¢€,), 0<e<g;, any two continua (compact connected
sets) Cy < B(xy,r;)ND and C; « D\ B(xy,1,), and each Borel function n: (7, 7,) —[0, o] such
that

)
[n(rdr=1.
n
We say that fis a ring Q-homeomorphism in D, if (1) holds for all points xy € D.

We say that the boundary of the domain D is weakly flat at a point x, 0D, if, for any
number P>0 and any neighborhood U of x;, there exists a neighborhood V cU such that
M(A(E, F; D)) >P for any continua E and F in D intersecting dU and dV. We also say that
the boundary D is strongly accessible at a point x,€dD, if, for any neighborhood U of x,,
there are a compactum U of E c D, a neighborhood V cU of X, and a number §>0 such that
M(A(E,F;D)) > 8 for any continuum F in D intersecting oU and 9dV. The boundary of D is
called strongly accessible and weakly flat, if it has the corresponding property at every its point,
of. [11].

Similarly to [11], we say that a function ¢: M" — R has the finite mean oscillation at a point
xp€ M", abbr. 0 FMO(x,), if

_ 1 -
i —o.ldo - oo,
1-,1—1}}) G4 (B(x),¢€)) B(aé[),e)‘ P08 dog (1)<
where
~ 1
Be | o()dog(x)

05 (B(10,0) 3

is the mean value of the function ¢(x) over the B(xy,e) with respect to the measure G .

Theorem 1. Let D be locally connected at a point x,€dD, let D" be strongly accessible, and
let the closure D’ be compact. If Q e FMO(x,) , then any ring Q-homeomorphism f:D— D’ can
be continued to the point x,, by continuity on (M, D,).

Corollary 1. Let D be locally connected at the point x,€dD, let oD’ be strongly accessible,
and let D’ be compact. If

— 1

im ————————— dc; (x) <o

il—?(l) 63 (B(x,¢)) B(x{,e) Reoa ()=
any ring Q-homeomorphism f: D — D’ can be continued to the point x,, by continuity on (M, D,).

Theorem 2. Let D be locally connected on the boundary, let 0D be strongly accessible, and let
D’ be compact. If Q belongs to FMO, then any ring Q-homeomorphism f:D — D’ admits a con-
tinuous continuation j_’ DD’

Theorem 3. Let D be locally connected on the boundary, let D’ be weakly flat, and let D
and D’ be compact. If Q belongs to FMO, then any ring Q-homeomorphism f:D — D’ admits the
continuation to the homeomorphism f:D — D’
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