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Multivariate cryptosystems are divided into public rules, for which tools of encryption are open for users and systems
of the El Gamal type, for which the encryption function is not given in public, and, for its generation, the opponent
has to solve a discrete logarithm problem in the affine Cremona group. Infinite families of transformations of a free
module K" over a finite commutative ring K such that the degrees of their members are not growing with iteration
are called stable families of transformations. Such families are needed for practical implementations of multiva-
riate cryptosystems of the El Gamal type. New explicit constructions of such families and families of stable groups
and semigroups of transformations of free modules are given. New methods of creation of cryptosystems, which use
stable transformation groups and semigroups and homomorphisms between them, are suggested. The security of these
schemes is based on a complexity of the decomposition problem for an element of the affine Cremona semigroup into
a product of given generators. Proposed schemes can be used for the exchange of messages in a form of elements of
a free module and for a secure delivery of multivariate maps, which could be encryption tools and instruments for
digital signatures.
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1. On Post Quantum and Multivariate Cryptography, public key schemes approach. Post
Quantum Cryptography (PQC) serves for the research of asymmetric cryptographic algorithms,
which can be potentially resistant against attacks based on the use of a quantum computer.
Multivariate cryptography is one of the oldest directions of PQC. It uses, as security tools, a non-
linear polynomial transformations f of kind:

Xy =[xy, Xy, s X)), Xy = fo(Xy, Xy oy X)), s X, = (X, Xy s X))

acting on the affine space K", where fri=1,2, .., n from K[x,, x,, ..., x;] are multivariate polyno-
mials given in a standard form, i. e. via a list of monomials in a chosen order (see [1]).

The most popular form is the usage of a very special map fin a public key mode. It means the
key holder Alice has some initial data D, which allow her to solve the equation f(x) = b, where b
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and x are known and unknown elements of the free module K", but a public user Bob has only f
given publicly in its standard form. Asymmetry means that Alice has tools for the encryption and
decryption, but Bob has only an encryption procedure.

Public knowledge on f = f, (allows the adversary to create as many pairs of kind plaintext
p-ciphertext ¢ = f(p) as he/she wants. It makes the problem of practical design of such a crypto-
system to be a difficult task. First examples were based on families of quadratical bijective trans-
formations f,, (see [1—3]), such choice implies a rather fast encryption process.

In [4], the idea of a multivariate Diffie—Hellman (DH) protocol was modified in various
ways. It uses recent constructions of large families of stable subsemigroups of small degree in
affine Cremona semigroups containing large cyclic semigroups.

In Section 2, we introduce new cryptographical protocols with the usage of the concept of a
tame homomorphism of stable semigroups of affine transformations (homomorphic map, which
is computable in polynomial time). The idea to exploit the complexity of word problem for the
Cremona semigroup about the decomposition of a given polynomial transformation g from the
semigroup into given generators is presented in Section 3.

The multivariate nature of collision maps allows us to use these algorithms for the safe ex-
change of multivariate transformations. Various deformation rules can be used for this purpose
(see Section 4). Correspondents may use a family of invertible generators g,. Assume that one of
them can generate the inverse of g . Then the symbolic El Gamal type tahoma algorithms can be
used by correspondents. They can use the inverse protocol to elaborate pairs of mutually invertible
transformations. So, they can conduct the information exchange protected via the complexity of
some difficult problem. Section 5 introduces the inverse of the group enveloped symbolic Diffie—
Hellman algorithm described in [4, 5].

The last section is devoted to the implementation of the algorithm of Section 3 via symbolic
walks on graphs A(n, K) (see [6, 7]).

In all realizations of algorithms, we use stable subsemigroups .S of the affine Cremona se-
migroup S(K") generated by special symbolic automata defined in terms of special algebraic
graphs. The method of generation allows us to construct, for each bijective transformation of S, its
inverse element. In fact, we use linguistic graphs defined in [8]. They are bipartite graphs with
a special coloring of vertices such that, for each vertex, there is a unique neighbor of the selected
color. We did not use the terminology and general technique of symbolic walks on linguistic
graphs. In fact, for each family of graphs considered in the paper, an algorithm of generation of the
corresponding stable semigroup was given in independent way.

2. Tame families and concept of stability. Let us consider basic algebraic objects of
multivariate cryptography, which are important for the choice of appropriate pairs of maps f,
/'in both cases of public key approach or idea of asymmetric algorithms with protected en-
cryption rules.

Let us consider the totality SF, (K) of all rules f of kind:

Xy =[xy, Xy, oy X)), X9 = fo(Xy, Xy ooy X)),y ey X = [ (X Xy oy X))

acting on the affine space K", where »i=1,2, .., n,for the given parameter n and a chosen com-
mutative ring K with the natural operation of composition. We refer to this semigroup as a semi-
group of formal transformations SF,(K) of free module K". In fact, it is a totality of all endo-
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morphisms of the ring K[x,, x,, ..., x,] with the operation of their superposition. Each rule f from
SF (K) induces a transformation ¢(f), which sends the tuple (p,, p,, .., p,) into (f,(p,, Ps, ... P,,),
fs(0, Py s P,)s s (D1 Doy -y P,))). The affine Cremona semigroup C(K") is a totality of all trans-
formations of kind #(f). The canonical homomorphism z: — #(f) maps the infinite semigroup
SF, (K) onto a finite semigroup S(K") in the case of finite commutative ring K.

We refer to the pair (f, /') of elements SF, (K) such that ff'and f'f are two copies of the iden-
tical rule x; - x, i = 1, 2, ..., n, as a pair of invertible elements. If (f, /") is such a pair, then the
product £(f)}¢(f") is an identity map. Let us consider the subgroup CF,(K) of all CF, (K)-inver-
tible elements of SF, (K) (group of formal maps). It means fis an element of CF, (K) if and only if
there is f* such that ff" and f'f are identity maps. It is clear that the image of a restriction of £ on
CF (K) is the affine Cremona group C,(K) of all transformations of K" onto K", for which there
exists a polynomial inverse.

We say that a family, of subsemigroups S, of SF,(K) (or S(K") is stable of degree d, if the
maximal degree of elements from S, is an independent constant d, d > 2. If K is a finite commuta-
tive ring, then stable semigroup has to be a finite set. The brief observation of the known families
of stable groups can be found in [4, 5] (see also [9—12]).

Let £, from SF,(K) be a family of nonlinear maps of degree bounded by constant d. We say
that /, form a tame family, if there is a family g, from SF, (K) of degree bounded by constant @’ such
that f g =g f, are identity maps. Let T, and T, be two elements from the group AGL, (K) of all
affine bijective transformations, i. e., elements of the affine Cremona group of degree 1. Then we
refer to f = T, f,T, as linear deformation of f,. Obviously, f} is also a tame family of transforma-
tions, and the degrees of maps from this family are also bounded by d. The degrees of inverses of
/1 are bounded by d’. Let G, < SF, (K) be a stable family of subgroups of degree d, d > 2. Then the
nonlinear representatives f, of G, form a tame family of maps.

3. On the concept of tame homomorphism and related algorithms. Let G = G, be a family of
stable subsemigroups of SF (K) (or S(K")), and let L = L _, where m depends on 7, be a family of
stable subsemigroups of SF, (R) (or S(R™)), where K and R are commutative rings. There are tame
homomorphisms ¢ = ¢, from G into L, i. e. the value of ¢ at each point g from G, is computable in
polynomial time from 7. Let us assume that there are semigroups B = B, < G, given by their ge-
nerators by, b,, ..., b,. Let us assume that Alice has families of tame transformatlons TE1 of K" and of
7, of R". We assume that these data are known to Alice. She forms (a, = b, TC1 ,al=1,0(b)m, b)Y
i=1,2, .., rand sends them to Bob. The elements of these pairs are given in thelr standard forms
for representatives of SF,(K) or SF, (R).

3.1. Key exchange protocol. The list of pairs known for Bob defines a homomorphism A be-
tween the subsemigroups A =(a,, a,, ..., a,) and A'={aj, @), , ..., @) given by its values on genera—
tors A (a) = A (a) fori=1,2, ., r. Bob forms a via his ch01ce of word (;, e (a;, Yo (a ) t
the alphabet of generators of A such thata;, #a; fors=1,2,..¢-1 Hesendsato Alice and keeps
A)=d = (a,1 yh (ar,2 ya .. (a Y asa colhs10n element

Alice knows the tame homomorphlsm ¢ and easily computes a’ as 7, ¢(m; a1'c1)rt2 )

Complexity remark. The adversary has to solve the word problem for the subsemigroup A4, i. e.,
find the decomposition of @ from A into generators a,,i=1, 2, ..., £. The general algorithm to sol-
ve this problem in polynomial time in the variable 7 is unknown, as well as a procedure to get its
solution in terms of quantum computations.
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Remark 1. The condition of stability for the semigroups G and L and the usage of the tame
transformations m, and ke allow us to estimate degrees of a and a colhslon map. If the maximal
degrees of m,;(n) and '(n) are [, and I}, the degrees of n (n) and ©; !(n) are bounded by [,and [,
and the stable groups G and L are of degrees d and d', then the degrees of a and A(a) are boun-
ded by [, lid and L,/;d!

Remark 2. One can use other natural conditions on 7, and m,. Let us assume that G < G, and
L < G,, where G, are stable families of subsemigroups of degree ¢, ¢, < d and, ¢, t, < d’, respec-
tively. Let us consider normalizers N, and N, of G, and G, in the affine Cremona semigroups S(K")
and S(R™). It means that N, and N, are the totahtles of transformatlons 7 from C(K") and C(R™)
such that =, Glnl ,i=1,2, comade Wlth G, and G,. We can take n; of kind 7\n, and =, of kind T)n,),
where 7, of kind 7, are elements of N, i=1, 2, transformations T, and T, are elements of groups
AGL,(K) and AGLm(R) Then the degrees of a and A(a) are restricted by ¢, and z,,.

Note that, in the case G = G,, L = G,, the degrees of a and A(a) are bounded by d and d'. We
refer to the presented above algorithm as the tahoma word protocol. The term tahoma (name of
shrift for word processing) stands for a tame homomorphism.

The protocol exploits the complexity of the word problem for a semigroup of polynomial trans-
formation of a free module. In the case considered in Remark 2, we use the term stable tahoma
word protocol.

3.2. Inverse tahoma word protocol. Let us modify protocol 3.1 in the case of invertible ele-
ments ¢(a;) with an assumptlon that thelr inverses are known to Alice. Instead of pairs (a, a)),
Alice forms (a;, a*¥), where a* = (a] N i=1,2, .., r. Assume Bob gets the list of such pairs
from Alice. Note that A'isa group (a*| i=1,2,. r) So, Bob is able to compute the antiisomor-
phism & sending z from A into ¢(z) ', because he knows the values of & on generators Like in

the previous protocol, Bob forms a via his choice of word (;, Yo (a;, Y . (q ) * in the alphabet
of generators of A such that (¢; ) #(a; ) fors=1,2, .., t—1and sends a to Ahce. Now he keeps

8(a)=(a; ) (a;
collision pair e = 8(a) ' as m,¢0(x; 'ar,)m, .

3.3. Inverse tahoma cryptosystem. Both above-written protocols exploit the complexity of
finding the decomposition of a into a product of given generating transformations. In the case
of 3.2, Alice and Bob can securely communicate, because they are able to use mutually inverse
transformations e and ¢ " as encryption tools. Alice writes her message p and sends e(p) to Bob,
who decrypts via the usage of 5(a). Bob can encrypt with 8(a) and Alice decrypts with e.

Remark 3. In the case where the transformation e = e, of a free module R” forms a stable
family of degree d', the adversary has to intercept o(m” ) messages and conduct costly the li-
nearization attack to restore e and 8(a). So, the correspondents can safely exchange O(md D)
messages. Note that, at any moment, Alice and Bob can start a new session of the inverse tahoma
word protocol.

A different usage of homomorphisms of a subsemigroup of the Cremona semigroup in the
cryptosystem was considered in [13, 14].

4. On the safe exchange of symbolic transformations. The symbolic nature of the collision
map can be used for a task that differs from the exchange of keys. We refer to it as the usage of DH
deformation symbolic rules.

) ki (a;k2 )k2 (ai*1 )k1 as an element of the collision pair. Alice computes her part of
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Let Alice have a free module K" over a commutative ring K. She has a subset Q of K" and a
polynomial map f: K" — K" such restriction of f|Q is an injective map from Q onto f(Q) =T.
Additionally, Alice has an algorithm to solve, in polynomial time, the equation x = b with respect
to the unknown x from Q and b from Q.

Alice and Bob use the tahoma word protocol or symbolic Diffie—Hellman protocol to ela-
borate the collision map g acting on K". After this step, Alice sends Q and the transformation
h=f+ gto Bob.

Now Bob can get f as h—g. He writes a plaintext p from Q and sends the ciphertext ¢ = f(x).
Alice uses her data for the decryption.

Remark 4. Note that a new algorithm is still asymmetric because Bob can encrypt, but not
decrypt. The encryption rule is known a to trusted customer (Bob) but the adversary has no ac-
cess to it. In fact, such access is protected by the word problem in a semigroup of transformations
of K" or the discrete logarithm problem in the corresponding affine Cremona semigroup.

Other deformations. Alice and Bob agree (via the open channel) on a deformation rule D(f)
for a multivatiate rule f from the affine Cremona semigroup. For example, it can be the multipli-
cation, i. e. f is the rule x; = f,(x, x,, .., x,) ,i=1,2, ., n, and g is the rule x;, — g (x,, x,, ..., x,),
i=1,2,..,n and Alice sends a tuple of polynomials f,g;, i =1, 2, ..., n. Bob uses the division to re-
store f. Instead of the addition deformation rule (sending x; — f, (x,, %,, ..., x,) + & (X}, Xy, ..., X)),
i=1,2,..,n), Alice can use a deformation with adding an element K[x,, x,, ..., xk]" obtained from
g via the usage of an s-time conducted derivation &°, where & = d/dx, + d/dx, + ... + d/d,
(rule x; = f, (x, Xy ..y X,) + Ssgn(xi, Xgy o X,), 1= 1,2, .., n). The last deformation is interesting,
because, in many cases, we can achieve the equality of degrees for f and D(f). It is easy to con-
tinue this list of possible deformation rules.

Remark 5. Let us assume that Q = K". So, f=/, is a bijection. Assume that the degrees of non-
linear maps f, are bounded by constant d. Let us assume that the adversary has option to inter-
cept some pairs plaintext-ciphertext (leakage from Bob’s data). In the case of interception of
O(nd), the adversary has chance for a successful linearization attack and get the map f. For exam-
ple, if d = 3, then the linearization attack cost is O(nlo). After that, the adversary has to find the
inverse function for flike in the case of multivariate public key.

To prevent “transition to knowledge” of an encryption multivariate map, Alice (or Bob) can
arrange a new session with the protocol and a transmission of a new deformed encryption rule, for
which secret data for the decryption are known.

Remark 6. The technique of linearization attacks on nonbijective maps or maps f, of unbound-
ed degree and a low density is not developed yet.

5. On the inverse version of the group enveloped symbolic Diffie—Hellman key exchange
protocol. Let G = G, be a family of stable subsemigroups of SF, (K) (or S(K")) and L =L _, where
m depends on n, be a family of stable subsemigroups of SF, (R) (or S(R")), where K and R are
commutative rings. There is a tame homomorphism ¢ = ¢, from G into L, i. e., the value of ¢ at each
point g from G, is computable in polynomial time from n. Let us assume that there are subgroups
A=A, <L, and B=B, <G, such that ¢(b)a = ad(b) for all elements a from A, b from B. Assume
that two families of tame transformations n = n(#) and p = p(m) are chosen.

We assume that these data are known to Alice. She forms pairs (¢; = b, n clf1 =7 b[1n71)
and (d, = p(l)(bz.)p%, d[1 = p(l)(bﬁ)pfi), i=1,2, .., 7, where elements b, are from B, and they, in-

30 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2018. Ne 10



On new symbolic key exchange protocols and cryptosystems based on a hidden tame homomorphism

verses, and images are given in their standard form SF, (K) or SF, (R). She sends them to Bob.
Let A be a homomorphism from {(c,, ¢,, ..., ¢,) to (d,, d,, ..., d ) sending c, to d..

We present briefly the protocol of symbolic computations introduced in [4] and define its
inverse version. We refer to this protocol as the group enveloped Diffie—Hellman scheme and
inverse group enveloped Diffie—Hellman scheme.

5.1. Protocol. Alice takes a pos1t1ve integer k, and a,a” from A and g’ from the semigroup
G. She computes g, = pad(g)a ' " and sends to Bob g=ng'n together with g,.

Bob chooses a positive integer k£, and an element c from R"in{c,, ¢y, ..., ¢,) (via the choice of a
word in the alphabet ¢, c,, ..., ¢,. He computes gz=cg'c "with¢= kyin standard form for elements
of SF,(K) and sends it to Ahce

Bob computes a map A(c) g, YA (¢"), because he knows the decomposition of ¢ and ¢ ' into
their generators and keeps it as the collision map.

Alice computes the collision map as paq)(n%ggn)a%;f1 withs=#k,.

Remark 7. The adversary has to consider the group C' =(¢,;|i=1, 2, ..., ) and solve the group
enveloped discrete logarithm problem, i. e., to solve yg'y ' = &g where x is the unknown integer
parameter and y from C' (possibly, via solving the decomposition problem of g, into semigroup
generators ¢y, C,, .., ¢,, & (decomposition of elements into Cremona semigroup generators, the
word problem in affine Cremona semigroup).

5.2. Inverse protocol. Let us assume that Alice can generate g’ such that ¢(g’) is invertible
and the inverse ¢(g') ' is computable for her.

As in the previous algorithm, Alice takes a posmve integer & ,, elements a,a " from A,,and g
from the semigroup G. Now, she computesz=¢(g'") ' and g L =Maza” ' and sendsto Bobg=ng'n"
together with g,.

As in the previous algorithm, Bob chooses a positive integer k; and an element c from in
(¢, €9y .., ¢,) Via the choice of a word in the alphabet of generators. He computes g, = cg'c ! with
t=kgyin standard form of SF, (K) and sends it to Alice.

Bob computes a map e = A(c)(g, ) ‘A(e) !t = kg, because he knows the decomposition of ¢
and ¢ ' into their generators and keeps e as his outcome of a collision.

Alice computes the map e ' as pa ¢(Tc71(gB)Sn)a71p71, s=k,.

5.3. Inverse group enveloped cryptosystem. Alice and Bob can communicate, because they
have mutually inverse transformations e ' and e.

1) Alice writes her message p and sends e '(p) to Bob, who decrypts via the usage of e.

2) Bob can encrypt with e, and Alice decrypts with ¢ '

Algorithm (5.3) was introduced in [4] as a desynchronized symbolic El Gamal algorithm.

6. Stable groups of cubical maps and a protocol based on the Cremona word problem. The
following family of stable groups was considered in [4]. Let K be a commutative ring. We define
A(n, K) as a bipartite graph with the point set P= K" and a line set L = K" (two copies of a Cartesian
power of K are used). We will use brackets and parentheses to distinguish tuples from P and L. So,
() =y, Py v p,) € P and [I] = [, L,, ..., ] € L . The incidence relation I = A(n, K) (or cor-
responding bipartite graph 1) is given by the condition p I /if and only if the equations of the
following kind hold:

py—ly=lp, ps—ly=p, L, p,—l,=1ps, ps—l3=pil;, ...
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p,~l,=p, 1, ,foroddn,

p,—L,=Lp, ,forevenn.

Let us consider the case of finite commutative ring K, |[K|=m. As it instantly follows from the
definition, the order of our bipartite graph A(n, K) is 2m". The graph is m-regular. In fact, the
neighbour of a given point p is given by the above equations, where the parameters p,, p,, ..., p, are
fixed elements of the ring, and the symbols /;, /,, ..., [, are variables. It is easy to see that the value
for /; could be freely chosen. This choice uniformly establishes the values for /,, L, ..., [ . So, each
point has precisely m neighbors. In a similar way, we observe the neighborhood of the line, which
also contains m neighbors. We introduce the color p(p) of a point p and the color p(/) of a line / as
parameters p, and /; respectively.

Graphs A(n, K) with coloring p belong to the class of T linguistic graphs considered in [8]
(see also [15], which observes cryptographical applications of linguistic graphs). The linguistic
graph I' defined over a commutative ring K is a bipartite graph with partition sets K" and K" that
have color set L = K’ and L = K, respectively. The projection p of a point x = (x;, x,, ..., x,)), or line
Y=y Yy - y,), on the tuple of their first s and 7 coordinates respectively, defines the colors
of vertices. Each vertex has a unique neighbor with selected color. So, n + r=m +s. The incidence
of linguistic graphs is given by a system of polynomial equations over the ring K.

In the case of a linguistic graph I' with s = = 1, the path consisting of its vertices v, v;,
0y, .., U, is uniquely defined by the initial vertex v, and colours p(v,,),i=1, 2, ..., k of other vertices
from the path. So, the following symbolic computation can be defined. Take the symbolic point
x = (X, Xy, ..., X)), Where x; are variables and the symbolic key, which is a string of polynomials
S [y s [pp from K[x,]. Form the path of vertices v, = x, v, such that v,lo, and p(v,) = f,(x,), v,
such that v,lv, and p(v,) = f,(x,), ..., v, such that v,Jo, , and p(v,) = f,(x,).

We use term symbolic point-to-point computation in the case of even k and talk about sym-
bolic point-to-line computation in the case of odd k. We note that the computation C of each
coordinate of v, via the variables x|, x,, .., x, and polynomials f,, f,, ..., f, needs only arithme-
tical operations of addition and multiplication. As it follows from the definition of linguistic
graph the final vertex v, (point or line) has coordinates (% ,(x,), hy(x(, x,), hy(x, Xy, X5), .., B, (X,
Xy,.., X)), Where h (x,) = f,(x,). Let us consider the map H =n(C): x;, = h(x, x,, .., x,), i = 1,
2, ..., n, which corresponds to the computation C. Assume that the equation b = f,(x,) has exa-
ctly one solution. Then the map H: x; — h(x,, x,, .., x,), i =1, 2, ..., n, is a bijective transforma-
tion. In the case of finite parameter £ and finite densities of f(x,), i=1, 2, ..., n, the map H also
has finite density. If all parameters deg(f,(x,)) are finite, then the map H has a linear degree in
the variable n. Let us consider the totality > = >(n, K) of point-to-point computations C with
the symbolic key of kind fi(x) =x, + a,i=1, 2, ..., t, where the parameter ¢ is even. In case of a
linguistic graph with = s =1, we identify a computation C with the corresponding string (a,,
a,, .., a,). We assume that the empty string is also an element of 2. The natural product of two
strings given by tuples C, = (a,, a,, .., a,) and C, = (b, by, ..., b,) is a string C= C, o C, = (a,,
Ay, ... a4y b +a,by,+a,..b, +a). Thisproduct transforms X to a semigroup. The map n' send-
ing C to n(C) is a homomorphism of Y. into the affine Cremona group C(K"). In the case of lin-
guistic graphs A(n, K), we can prove that the totality G(n, K) =n'(2(n, K)) is a stable subgroup
of degree 3 (see [5]).
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We assume that a, = 0 and say that a transformation n(C) is irreducible, if a, # a,,,, i = 1,
2,.,t=2.1fa, #a, ,,and a,#a, we say that the irreducible computation C and the corresponding
transformation n(C) are standard elements.

We have a natural homomorphism G(n + 1, K) onto G(n, K) induced by the homomorphism
A from A(n + 1, K) onto A(n, K) sending a point (x,, X, .., X, , X, , ;) to (X, X, .., x,) and a line
[x), %y, s X, X, (] tO [x), X, ..., %, |. It means that there is the well-defined projective limit A(K)
of graphs A(n K) and groups G(K) of groups G(n, K), when 7 is growing to infinity. As stated in
[6] in the case of K= F,q>2, the infinite graph A(F,) is a tree.

It means that the group G(F ;) is agroup of walks of even length on a g regular tree starting
at the zero point with natural addition of them. A standard computation C defines a transfor-
mation n(C) in each group G(n, K), n > 2 and G(K). An irreducible transformation n(C) from
G(K) has an infinite order.

Some examples of a tame homomorphism were considered in [4]. We are going to use the
family of maps introduced below.

Let A, ., n>mbe acanonical homomorphism of A(n, K) onto A(m, K) corresponding to
the procedufe of deleting of the coordinates with indices m + 1, m + 2, ..., n. This map defines
the canonical homomorphism p(#n, m) of the group G(n, K) onto G(m, K).

Let R and K be finite extensions of a finite ring Q. Let us consider the diagram S(R™) >
> G(m, R) > G(m, Q) < G(n, Q) < G(n, K) < S(K") with extreme nodes S(R") and S(K"), where
n >m, and the arrow corresponds to a canonical homomorphism p = p(n, m), n >m. Alice is going
to use the stable tahoma word protocol with G = G(n, Q), G, = G(n, K), L= G(m, K), L, = G(m, R)
(see Remark 2).

She can use the subgroups H, = G, and H, = L, of invertible elements instead of the whole
normalizers N; = N(G,) of a subgroup G, in the affine Cremona group S(K"), and N, = N(L,) of
subgroup in the Cremona group S(R™). She also works with the affine subgroups AGL,(K) and
AGL (R).

Ahce forms n; = T\n,, where T, € AGL,,(K), n1 € H,, and n, = T,n,, where T, € AGLim(R)
n, € H,. She takes a subgroup, Where Glpt=n Gn1 ,L'=n,Ln, ,anda homomorphlsm Wix—
— n2(p (mxmy ))n2 ! between these semigroups. Alice will work with G, L' and p’ instead of G,
L, p. The map ' is tame for her, because she knows the decomposition of p’ into the conjugation
with m,, p and the conjugation with m,.

6.1. Example of the stable tahoma word protocol. Alice takes a subgroup B of G’ given
by the generators b,, b,, ..., b, and sends these generators to Bob together with a string p'(b,),i=1,
2, ..., . So, Bob knows just the restriction of pu’ on B given by its values on generators. He does
not know the triple G', L" and p’ with its decomposition into 3 maps. So, Bob selects a,, a,, ..., a,
where a, are elements of the alphabet {b,, b,, ..., b,}. He computes the composition b of selected
powers of a transformation a, from S(K") and sends the standard form of b to Alice. He keeps a
composition b’ of elements p'(a;) according to the selected order. Alice gets " as p'(b).

6.2. General complexity estimates for the cryptosystem in the case K= R = Q. Let us
assume that Alice is going to use the homomorphism between A(n, K) and A(m, K) form <n
and m = O(n). We will count the number of arithmetical operations of the commutative ring K,
which she needs to generate an element of g = G(n, K), which corresponds to the symbolic com-
putation with the key of length O(1).
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Counting steps of the recurrent process of creation g via the symbolic automaton gives us
O(n) operations. Alice chooses affine transformations Tand 7. The computation T " costs O(n?)
elementary operations. This means that Alice can create T"gT ' for O(n”) operations. Alice forms
elements b, b,, ..., b, from G(n, K) together with their i inverses and homomorphic images p'(b, )
i=1,2,..,7, frorn G(m K)in tnne O(n). She takes T~ and T from AGL ,(K)and formsa,=T b, T
and a;= T(b YT 'in time O(n ).

Bob recelves the list of pairs a, a,, i = 1, 2, ..., ». He computes a chosen word of the kind
a= aﬁlaéz for the chosen f1n1te parameter t and integers k,i=1,2, ..., ¢, in time O(n"*) ope-
rations and sends it to Alice. Bob writes his message p Py Py s Dyy)- To form the ciphertext,
he applies the transformation a; with multiplicity &, a; w1th multiplicity &, , .., a; ~ with mul-
tiplicity &, to p and forms the crphertext c. It takes hlrn O(n ) elementary operatrons Alice com-
putes a cublcal b = aT with O(n") operatlons After she gets d = T~' b in time O(n"). Alice easﬂy
gets p(d) and computese=T, dand f= eT1 . She computes p as f(c). The last step costs her o(n®)
elementary ring operations.

6.3. Special implementations. Let us consider an implementation of the above cryptosystem
in the case of a choice of maps T'and T as linear maps of finite density. Natural examples of such
maps are monomial transformations or elements of direct sum of groups of kind GL ,(K), where d
is a finite constant.

Alice chooses the affine transformations Tand T ". The computation g T~ costs O(n) elemen-
tary operations. This means that Alice can create T g T ' for O(n) operations. Alice forms ele-
rnents b, by, ..., b tfrom G(n, K) together with their i 1nverses and hornornorphlc images p(b,),i=1

r frorn G(m K)i 1n tlme O(n). She takes T, ™! , T,,and T," ! from GL, (K) and forms a, = T
bi,T anda’ ;=T p(bi- )T 'in time O(n).

Bob recerves the list of pairs a;, @', i 1 2, ..., 1, of cubical elements of density O(n). He com-
putes a chosen word of klnd a= alk1 k2 a for the chosen finite parameter ¢ and the integers &,
i=1,2, ...t in time O(n°) 0perat1ons and sends it to Alice. Bob writes his message (p) PPy s
p,)- To forrn the crphertext he applies the transformation a with multiplicity k,, a; ~ with mul-
tiplicity &, ,, .. a with multiplicity £, to p and forms the crphertext c. It takes h1n1 O(n) elemen-
tary operatlons Ahce computes a cubrcal b = aT with O(n®) operations. After that, she gets
d =T "bin time O(r?). Alice easﬂy gets p(d) and computes e= T d and f=eT,” ! She computes p
as f(c). The last step cost her O(n?) elementary ring operations.

This research is partially supported by the grant PIRSES-GA-2013-612669 of the 7th Framework
Program of the European Commission.
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[HCTUTYT TeJeKOMYHIKaITiii i TII06aIbHOTO iH(GOPMAIiTHOTO
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I[TPO HOBI CUMBOJITHHI ITPOTOKOJIN1 OBMIHY
KJITOYIB TA KPUIITOCUCTEMU, 11O OITNMPAIOTHCA
HA TTPUXOBAHI PYYHI TOMOMOP®I3MU

Kpurtrrocucremu B 6araThoX 3MiHHUX TOMIISIOTHCS HA TYOTITHI KITIOUi, IS SIKUX 3aci6 i pyBaHHs BiIKpH-
THI JI7I51 BCIX KOPUCTYBAUiB, Ta Kpuritocuctemu Tuity Esib Tamans 3 gysxitieo mmdpyBaHHs, 10 He HATAETHCS
myGJTiaHO, 71 i1 TeHepyBaHHI OTIOHEHT TIOBUHEH PO3B’sI3aTh MPoOIeMY TUCKPETHOTO JoTaprdMa B adinHiit rpy-
ni Kpemonu. HeckinuenHi po/iuHu 11epeTBOPEHb BIJIbHUX MOYJIIB K" Han ckiHueHHUM KOMYTaTUBHUM KiJIbIIEM
K raxi, mo cTermeHi iX MpeICTABHUKIB HE 3POCTAIOTD TIPH iTepallii, Ha3WBAOTh CTAGITLHIMI POJANHAMH TTEPETBO-
penb. Taki poanHM HEOOXI/IHI [JIsT TPAKTHYHKX peastisalliit kpurrrocucteMm tuiy Enb Famans. Hasegeno HOBI KOH-
CTPYKINI TaKWX POJMH Ta POANH CTabiTbHUX HAMIBIPYT TIEPETBOPEHD BIIBHUX MOYJIiB. 3alPOMOHOBAHO HOBI
METO/IM CTBOPEHHSI KPUIITOCUCTEM, sIKi BUKOPUCTOBYIOTh CTabiJIbHI TPYIIM Ta HAMIBIPYIIH PA3OM 3 TOMOMOP-
(dismamu Mik HEMH. Besleka Takux cxeM IPYHTYETHCSA Ha CKJIAIHOCTI MPOOJeMH PO3KIany elemMenTa ainnol
Hanisrpynu Kpemonu B 106yToK 3amanux tBipHuX. CXeMU MOXKYTh BUKOPUCTOBYBATHCS SIK JJIsi OOMIHY OBi-
JOMJIEHHSIMW Y BUTJISIZI €JIEMEHTIB BILHOTO MOJYJISI, TAaK 1 JI7IsT GE3METHOTO Y3TOLKEHHS TIOMHOMIATbHIX Te-
PETBOPEHbD BiJ 6HaraThoX 3MIHHMX, SIKi MOXKYTh OYTH 3HAPAAAAM MNUdPYBaHHSA ab0 IHCTPYMEHTOM JJist 1ud-
POBOTO IAIUCY.

Kntouoei crnosa: kpunmozpagis 6id 6azamvox sminnux, cmabiivii zpynu ma naniezpyni, npodiema 0exoMnosuuii
HeMIHILIH020 Nepemeopenis 6i0 6azamvox SMIHHUX 3G 3A0AHUMU MEIPHUMU, OUK] A DYUHI NEPEMEOPEHHS, PYUHi
20MOMOPQizMU, NPOMOKOAU OOMINY KAIOUIB, KPUNIMOCUCTNEMU, anzebpaiuii zpagi.
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VHCTUTYT TEJIEKOMMYHUKAIIA 1 TI100aTbHOT0 MHMDOPMAITHOHHOTO
npoctpancTBa HAH Ykpanmnsr, Kues
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O HOBBLIX CUMBOJIMYECKUX ITPOTOKOJIAX
OBMEHA KJIIOYEN 1 KPUIITOCUCTEMBI, OCHOBBIBAIOTIINXCS
HA CKPBITBIX PYYHBIX TOMOMOPDOUN3MAX

KpurnrocucreMbl OT MHOTHX TIEPEMEHHBIX TTOAPA3Ie/IOTC Ha MyOJIUYHbIe KIIOYH, /IS KOTOPIX Croco0 mimd-
POBaHUS OTKPBIT /IJIA BCEX MOJIb30BATENEH, U KPUIITOCUCTEMBI ThTa Db lamans ¢ dyukimeit mmdpoBanus, He
3aaHHON MyOJIMYHO, ISl ee TeHepaIiK OIIIOHEHT J0JIKeH PENTiTh MPobaeMy AUCKPETHOTo joraprdma B aduH-
noii rpynne Kpemonnl. Beckoneunble cemeiictsa nmpeobpasosanuii csoboanoro Moyt K’ Hall KOHEUHbIM KOM-
MYTaTHUBHBIM KOJIBIIOM K Takue, 9TO CTENIEHN UX TPECTaBUTENel He BO3PACTAIOT TP UTEPAIINH, HAa3bIBAIOT CTa-
OGuIbHBIME ceMelicTBamMu MTpeoGpasoBanmii. Takue ceMeiicTBa HEOOXOAMMBI JIsI MPAKTHYECKUX Pearsaliuii
KpUTIITOCHCTEM TUTa Db [amass. [IpuBeenbl HOBble KOHCTPYKTHUBHBIE TOCTPOEHUS TAKUX CEMEICTB 1 CeMENCTB
CTaGUIIBHBIX TIOJMYTPYIIN TIpeodpasoBaHuil cBOOOAHBIX MozyJel. TTpeanokeHbl HOBbIE CIIOCOOBI TOCTPOEHMSI
KPUIITOCHCTEM, UCTIOb3YIONIIe CTaOU/IbHbIE TPYIIIBI ¥ MOJIYTPYIIIBI BMECTe ¢ TOMOMOPMU3MAMU MEsKLY HUMIL.
Be301macHOCTh TaKMX CXeM OIMPAETCst Ha CJOKHOCTD TIPOOJIEMbI PA3JIOKEHUsT a1eMeHTa apUHHON MOy TPYIIbI
KpeMoHbI B TTpomn3Be/ieHNe 3aaHHbIX 00pasyonx. CXeMbl MOTYT MCIOTb30BaThCS Kak [7ist 0OMeHa coobiie-
HUSAMU B BUJIE 9JIEMEHTOB CBOOOIHOIO MOJIYJIs, TaK ¥ JIJIsi GE30MACHOTO COTIACOBAHMUS TTIOJMHOMUAIBHBIX TIpe-
00pa3oBaHUil OT MHOTHMX MEPEMEHHBIX, KOTOPbIe MOTYT ObITh CpeACTBaMU HIM(POBAHUS WU HHCTPYMEHTAMU
MHPOBOI TTOATTUCH.

Kniouesvie caosa: xpunmozpaghust 0m MHozux nepemMenoix, cCmaduivhvle epynnvl U no0zpynnvl, NPodiema 0exom-
NO3UUUU HETIUHELH020 NPe0dPA3OBAHUSL OM MHOZUX NePEMEHHBIX N0 3A0AHHBIM 00PA3YIOUUM, OUKUE U PYUHbLe Npe-
00pasosanus, pyunvle 20MOMOPPUIMbL, NPOMOKOIbL 00MEHA KIHOUEL, KPUNMOCUCTNEMDL, aJzeOpauueckue zpagol.
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