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We study the Dirichlet problem for quasilinear partial differential equations of the form Au(z) = h(z) f (u(z)) in the
unit disk D < C with continuous boundary data. Here, the function h:D — R belongs to the class [P (D), p>1, and
the continuous function f:R — Ris assumed to have the nondecreasing | f| of |t| and such that f(¢)/t—0 as
t — oo. We prove the existence of a continuous solution u of the problem in the Sobolev class WliL P (D). Moreover,
we show that if p>2, then ueCl*(D) with a=(p-2)/p-
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1. Introduction. We study the existence of regular solutions to the Dirichlet problem for the qua-
silinear Poisson equation

Au(z)=h(2)f(u(2)) (1)

in the unit disk D={z:z|<1} of the complex plane C with continuous boundary values. In ge-
neral, we assume that the function #:D— R is in the class L”(D), p>1, and the continuous
function f:R — R is either bounded or has the non-decreasing | f| of |#| and such that

lim U0} =0, (2)
t—os L
without any assumptions on the sign and zeros of the right-hand side in (1). We analyze how the
degree of regularity of solutions depends on the degree of integrability of the multiplier .

On the one hand, the interest in this subject is well known both from a purely theoretical
point of view, due to its deep relations to linear and nonlinear harmonic analysis, and because of
numerous applications of equations of this type in various areas of physics, differential geometry,
logistic problems, etc. In particular, in the excellent book by M. Marcus and L. Veron [1], the
reader can find a comprehensive analysis of the Dirichlet problem for the semilinear equation

Au(z)= f(z,u(z)) 3)
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in smooth (C?) domains D in R”, n> 3, with boundary data in L'. Here, ¢ — f(, ¢) is a continuous
mapping from R to a weighted Lebesgue space L'(D,p), and z— f(z,-) is a non-decreasing
function for every ze D, f(z,0)=0, such that
lim 220 _
im =

(= L

>, (4)

uniformly with respect to the parameter z in compact subsets of D .

On the other hand, Eqs. (1) naturally arise under the study of some semilinear equations in
the divergent form. Indeed, we have established [2] that, in arbitrary simply connected domains
D c C, solutions of the semilinear equations

div[A(2)VU ()] = /(U (2)) 6

with suitable matrix functions A(z) can be represented as the composition U =uo®, where ® is
a quasiconformal mapping of D onto I associated with A, and u is a solution of Eq. (1) with
h=]. Here, J stands for the Jacobian of the mapping ®™'. Hence, the results on regular solu-
tions for Egs. (1) presented in this paper and the comprehensively developed theory of quasicon-
formal mappings in the plane, see, e.g., [3-5], are good basic tools for the further study of Egs. (5).
The latter opens up a new approach to the study of a number of semi-linear equations of mathe-
matical physics in anisotropic and inhomogeneous media.

In Section 2, we give a necessary background for the Poisson equation Au(z)= g(z) due to
the theory of the Newtonian potential and to the theory of singular integrals in C . First, we recall
that, correspondingly to the key fact of the potential theory, see Proposition 1, the Newtonian
potential

Ni(2)i= 5 [(In| 2=l g w)dm () )
C

of arbitrary integrable densities g of charge with compact support satisfies the Poisson equation
in a distributional sense, see Corollary 1. Moreover, N g is continuous for g € [P (C), and, further-
more, the Newtonian operator N : [P (C) — C(C) is completely continuous for p >1, see Theorem
1. The example in Remark 2 shows that N, for ge L1(C) can be not continuous and even not in
L} (C). Theorem 2 describes additional regularity properties of N, depending on a degree of
integrability of g. Finally, resulting Corollary 2 states the existence, representation, and regu-
larity of solutions to the Dirichlet problem for the Poisson equation with arbitrary continuous
boundary data.

Section 3 contains the main result of the paper. It is well known that solutions to the qua-
silinear Poisson equation (1) in a unit disk D for arbitrary continuous boundary data belong to
the Sobolev space Wlf) J(D) forsome g>2,and U islocally Hélder continuousin I, see, e.g., [6].
If, in addition, ¢ is Hélder continuous, then U is Holder continuous in D . In Theorem 3, we
prove the existence of solutions in the Sobolev class ng’cp (D), if the multiplier #:D — R isinthe
class I (D), p>1. Moreover, we show that if p>2, then U e Cf(‘)g(]D)) with aa=(p-2)/p. The
proof of Theorem 3 is realized through reducing the problem to the case of the linear Poisson
equation by the Leray—Schauder approach.
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2. Potentials and the Poisson equation. Let I be the unit disk in the complex plane C.
For z and weD with z#w, let

1-zw
z—w

1|z

and P(ze"):= -
(&e%) [1—ze it

G(z,w)=log

(7)

be the Green function and Poisson kernelin . If ¢ € C(dD) and g € C(D), then a solution to the
Poisson equation

Af(2)=8(2) (8)
satisfying the boundary condition f[yp= o is given by the formula
1(2)=Tp(2)-G,(2), )
where
1 2n ) )
Fo(2)=o [Pz e)o(e)dt, Gy(2)=[G(z,w0)g(w)dm(w), (10)
0 D

see, e.g., [7], p. 118-120. Here, m(w) denotes the Lebesgue measure in C.

In this section, we give the representation of solutions of the Poisson equation in the form
of the Newtonian (normalized antilogarithmic) potential that is more convenient for our re-
search. On this basis, we prove the existence and representation theorem for solutions of the
Dirichlet problem to the Poisson equation under the corresponding conditions of integrability
of sources g.

Correspondingly to 3.1.1 in [8], given a finite Borel measure v on C with compact support,
its potential is the function p,, : C —[—eo,e0) defined by

pv(z):jln\z—wwv(w}). (11)
C

Remark 1. Note that the function p, is subharmonic by Theorem 3.1.2 in [8] and, con-
sequently, it is locally integrable on C by Theorem 2.5.1 in [8]. Moreover, p, is harmonic out-
side the support of v.

This definition can be extended to finite charges v with compact support (named also signed
measures), i. e., to real-valued sigma-additive functions on Borel sets in C, because v=v" —v~,
where v and v~ are Borel measures by the well-known Jordan decomposition.

The key fact is the following statement, see, e.g., Theorem 3.7.4 in [8].

Proposition 1. Let v be a finite charge with compact support in C . Then

Ap, =27y (12)

in the distributional sense, i. e.,
[P @Ay (2)dm(2)=2n [y (2)dv(2) Yy eCF(©). (13)
© C
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As usual, C5’(C) denotes the class of all infinitely differentiable functions y:C—R with

2 2
compact support in C, A= 8_2+8_2 is the Laplace operator, and dm(z) corresponds to the

ox~ dy
Lebesgue measure in C .

Corollary 1. In particular, if, for every Borel set B in C,

v(B):=[g(2)dm(2), (14)
B
where g:C — R is an integrable function with compact support, then
AN, =g, (15)
where
1
Ng(z)::2—'|.(ln|z—w])g(w)dm(w) (16)
Tc

in the distributional sense, i. e.,

[N () Ay (2)dm(2) = [y(2)g(z)dm(z) VyeCi(C). (17)
C C

Here, the function g is called a density of charge v and the function N, is said to be the
Newtonian potential of g .

The next statement on continuity in the mean of functions y:C — R in L7(C), g€[1, ),
with respect to shifts is useful for the study of the Newtonian potential, see, e.g., Theorem 1.4.3 in [9].

Lemma 1. Let y e [1(C), g €[1, ), have a compact support. Then

lim [y (z+A2)-y(2)|! dm(2)=0. (18)
Az—>0(C

Theorem 1. Let g:C— R be in I’ (C), p>1, with compact support. Then N, is continuous.
A collection {N 4} is equicontinuous on compacta, if the collection {g} is bounded by the norm in
[P (C) with supports in a fixed disk K. Moreover, under these conditions, on each compact set in C,

INgllc <M-llIgll, - (19)

Proof. By the Hélder inequality with 1+1 =1, we have
q P

1
~[I|1n|z—w|—1n|c—w||q dm<w>]q =
K
1

I:J. W (E+A2) -y (©)[ dm(g)]q )
C

gl
21

|Ng(2)_Ng(C)|<

_ligl,
Con
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where &=C-w, Az=2-C, W (§):=xx.(&)In[E| Thus, the first conclusion follows from
Lemma 1, because In|Ele L] (C) forall g e[1, ).

The second conclusion follows by continuity of the integral on the right-hand side in the
above estimate with respect to the parameter { e C. Indeed,

q
lve-ve, m:{j In|g|” dm@} ,
A

where A denotes the symmetric difference of the disks K+ and K+«. Thus, the statement
follows from the absolute continuity of the indefinite integral.
The third conclusion similarly follows through the direct estimate

gl

1
N ©l< o {j In ¢l dm (o >}q [J @) dm@]

Remark 2. 1t is easy to verify that the function
g(2)=w(z|), zeD, g(z)=0, zeC\D,

where
o@)=1/?A-1nt)*, te(0,1], ae(l,2), w(0)=-oo,

isin I1(C), and its potential N ¢ is not continuous. Furthermore, N, & Ly, .

The following theorem on the Newtonian potentials is important to obtain solutions of
the Dirichlet problem to the Poisson equation of a higher regularity.

Theorem 2. Let g : C — R have compact support. If g € L'(C), then N g € Lige forallre[1, ),

N, er1 9 forall qe[1,2), moreover, N, EWIOC ,
82N *N

=AN, =4—25 = e. 20
i =MWNg=lgm, =8 ac (20)

Ifg e ’(C), p>1,thenN, e Wlocp’ AN, = g a.e. and, moreover, N, € Wl 3 for q>2, consequently,

is locally Holder continuous. If g€ L’ (C), p>2,then Nge C1 oo » Where a.=(p—-2)/p.
In this connection, recall the definition of formal complex derivatives:

0 1 J . 8 o 1|0 .0 .
— =iy, —==—{—+i—r, z=x+Iiy.
0z ox ay dz 2|ox dy

The elementary algebraic calculations show that the Laplacian

2 2 2 2
NS
dx” 9y 0z0z  dzoz
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Proof. Note that N, is the convolution y*g, where y({)=In[{|, and, hence, N, € [,

for all re[t, oo), see, e. g., Corollary 4.5.2 in [10]. Moreover, as is well known, B\g g %\V g
z
and a\g*g = —*g, see, e. g, (4.2.5)in [10]. In addition by elementary calculations, we get
z z
0 1 1 0 1 1
—In|z-wE———, —In|z-wE———
0z 2z-—w d 2z-w
Consequently,
ON,(2) 1 ON,(z2) 1=
g g
— T, =T
5 g(2), = 1 g(2),

where Tg and Tg are the well-known integral operators

Tz )——J @, Tg(o)= Jg( )

Thus, all the rest conclusions for g e L' (C) follow from Theorems 1.13-1.14 in [11]. If g € LP(C),
p>1,then N, e Wl1’q q > 2, by Theorem 1.27, (6.27) in [11]. Consequently, N, is locally Holder

continuous, see, e. g., Theorem 8.22 in [12], and N, erz P by Theorems 136 1.37 in [11]. If
gel’(C), p>2,then N, eClOC with oc:— by Theorem 1.19 in [11].
p

By Theorem 2 and the known Poisson formula, see, e. g., 1.D.2 in [13], we come to the fol-
lowing consequence on the existence, regularity, and representation of solutions for the Di-
richlet problem to the Poisson equation in the unit disk I, where we assume the charge density
g to be extended by zero outside D

Corollary 2. Let @:9D— R be a continuous function and let g:1D— R belong to the class
IP(D), p>1. Then the function U := N, —PN* + Ty N; =N, lop » is continuous in D with

g
Ulyp=9, belongs to the class ng’cp (D), and AU =g a.e.in D. Moreover, U e Wli)cq (D) for some

q>2 and U is locally Holder continuous. If, in addition, ¢ is Hélder continuous, then U is Hélder
continuousin D . If ge [P(D), p>2,then Ue Cll(’)g(]l))) , where oo=(p-2)/p.

Here, the Holder continuity of U for Holder continuous ¢ follows from the corresponding
result for integrals of the Cauchy type over the unit circle, see, e. g, Theorem 1.10 in [11], be-

€+Z
it

e —z
3. The case of quasilinear Poisson equations. The case is reduced to the Poisson equation
by the Leray—Schauder approach.
Theorem 3. Let ¢:9D — R be a continuous function, let h:D — R be a function in the class
IP(D), p>1,andlet f:R—R be a continuous function with the nondecreasing function | f| of
|t | such that

tlj}yg@@zo. (21)
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Then there is a continuous function U:D— R with U |yp= @, such that U e W]%’Cp (D) and
AU(2)=h(2)f(U(2)) fora.e. zeD. (22)

Moreover, U e Wli)’cq (D) forsome q>2, and U is locally Holder continuous in D . If, in addi-
tion, ¢ is Holder continuous, then U is Holder continuous in 1. Furthermore, if p>2, then

Ue Cll(’)g (D) where a.=(p-2)/p. In particular, U € Cll(’)g (D) forall oe(0,1) if he L*(D).

Proof. If || 2]|,=0 or || /|| =0, then the Poisson integral P, gives the desired solution of the
Dirichlet problem for Eq. (22), see, e. g, 1.D.2 in [13]. Hence ,we may assume further that || 21|, # 0
and || /1| #0.

By Theorem 1 and the maximum principle for harmonic functions, we obtain the family of
operators F(g;1): [P (D)— [P (D), t€[0,1]:

F(g;1):= Th'f(Ng_PN* +7), N; =Ny, Vrel01], (23)
g

which satisfies all hypotheses H1-H3 of Theorem 1 in [14]:
H1. First of all, F(g;t)el’(D) for all t€[0,1] and ge I’(D), because by Theorem 1,
J(Ng - PN* +T,) is a continuous function and, moreover, by (19),
g

IF(g DN, <IRIL| Mg, +lolle) e YTe[0,1].

Thus, by Theorem 1 in combination with the Arzela—Ascoli theorem, see, e. g., Theorem
IV.6.7 in [15], the operators F(g;t) are completely continuous for each t€[0,1] and even uni-
formly continuous with respect to the parameter t€[0,1].

H2. The index of the operator F(g;0) is obviously equal to 1.

H3. By inequality (19) and the maximum principle for harmonic functions, we have the esti-
mate for solutions g € I” of the equations g = F(g;1):

g, <kl F@M gL, +lel) <Al FB3MIIgl],)]

whenever || g [,2[|@|lc /M , i.e. then it should be

/GMIigl|_ 1
3Mligll, ~ 3MIlhll,’

(24)

and, hence, [ ||, should be bounded in view of condition (21).
Thus, by Theorem 1 in [14], thereisafunction g € [P (D) such that g = F(g;1). Consequently,
by Corollaries 2, the function U:= N, — PN* +T, gives the desired solution of the Dirichlet prob-
g

lem to the quasilinear Poisson equation (22).

Remark 3. Asis clear from the proof, Theorem 3 remains valid, if f isan arbitrary continuous
bounded function. These results can be extended to arbitrary smooth domains and applied to the
study of some physical problems.
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I[TPO PETYJIAPHICTD PO3B’A3KIB
KBA3UITHIVIHMX PIBHAHB ITYACCOHA

BuBuaerbcs 3amava /lipixse a0 KBa3imiHiMHUX AndepeHIlialbHUX PiBHAHb Y YaCTHHHUX TMOXiTHUX BHUIY
Au(z) = h(z) f(u(z)) Boaunrunomy koui ) ¢ C 3 HenepepBHUMU rpannunuMu ymoBamu. Tyt ynkuia 4:D — R
HasexnTs knacy [P (D), p>1, i HemepepBHa GyHKIIA f:R — R HPUITYCKAETHCS Takoo, Mo ii | f| sax GyHKIisa
Bif | t | € HecHa/Holo i Takolo, o f(t) /¢t — 0 npu t —eo. JloBOAUTLCA iCHYBaHHSA HEIIEPEPBHOIO PO3B’A3KY
u nanoi npo6aemu B kaaci CoboseBa “lliép(m)' Binpmr Toro, mokasano, Mo AKIO p>2, TO ueCll(’)g(]H)) 3

a=(p=2)/p.
Knrouoei caosa: ksasininitine pisusuns Ilyaccona, meopis nomenyiany, 102apupmiunuil ma HolomoHie nomeH-
uianu, sadaui Jlipixne, kracu Cobonesa, keasikongopmii 6i0o0paxcens.
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O PETYJISIPHOCTU PENIEHUN
KBA3BUJIMHEMHBIX YPABHEHUI [TYACCOHA

Wsyuaercs 3agava /lupuxiie s KBa3WIMHEHHBIX 1u(depeHinagbiblX ypaBHEHUH B YaCTHBIX MPOU3BOIHBIX
Buzia Au(z)=h(z)f(u(z)) B equnuanoMm kpyre D c C ¢ HenpepbIBHBIMU FPAHUYHBIMU YCJAOBUAMM. 3/1eCh (DyHK-
g h:D— R npunaanexut kaaccy I[P (D), p>1, v HenpepbiBHag GyHKIMA f: R — R 1pejoaraeTcs Takoi,
yto ee | f| Kak GyHKIMA OT || ABAAeTCA HeyObIBAOIIEH U TaKOM, 4TO f(@)/t—0 1pu t — 0. JloKazpiBaeTCS
CYTIECTBOBaHNE HETIPEPBIBHOTO peH_IeHI/IH u paccMarpuBaeMoii mpobseMbl B kacce Cobosiea Wl2 7 (D). bonee
TOT0, TTIOKAa3aHO, YTO eCIiu p > 2, TO ueC1 o M) ca=(p-2)/p.

Knioueevte canosa: xeasuruneinoe ypasuenue Ilyaccona, meopus nomenyuand, 102apuMueckull u HbiomoHos
nomenyuanvt, 3adava Jupuxie, xraccor Co601e6a, K6AUKOHPOPMHLIE OMOOPANCEHU.
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