

doi: https://doi.org/10.15407/dopovidi2018.04.025 $\ensuremath{\mathsf{YJK}}$ 539.3

А.М. Багно

Институт механики им. С.П. Тимошенко НАН Украины, Киев E-mail: alexbag2016@gmail.com

О квазилэмбовских модах в гидроупругих волноводах

Представлено академиком НАН Украины А.Н. Гузем

На основании трехмерных линейных уравнений классической теории упругости для твердого тела и линеаризованных уравнений Эйлера для жидкой среды исследовано распространение квазилэмбовских волн в системах слой идеальной сжимаемой жидкости — упругое полупространство и упругий слой — полупространство идеальной сжимаемой жидкости. Построены дисперсионные кривые для нормальных волн в широком диапазоне частот. Проанализировано влияние толщин упругого и жидкого слоев на фазовые скорости и дисперсию квазилэмбовских мод в гидроупругих волноводах. Предложены критерии существования квазилэмбовских мод в гидроупругих волноводах. Числовые результаты приведены в виде графиков и дан их анализ.

Ключевые слова: дисперсия волн, фазовая скорость, упругое полупространство, упругий слой, слой идеальной сжимаемой жидкости, полупространство идеальной сжимаемой жидкости, квазилэмбовские моды.

Задача о распространении квазилэмбовских волн в гидроупругом волноводе принадлежит к классическим задачам механики. Вместе с тем, являясь многопараметрической, она изучена недостаточно полно и в настоящее время ряд вопросов остаются актуальными. Обзор работ и анализ результатов, полученных в рамках классической теории упругости и модели идеальной сжимаемой жидкости, для более сложной трехкомпонентной упруго-жидкостной слоисто-неоднородной структуры, а также с привлечением более общих моделей твердых и жидких сред, приведены в [1-8]. В частности, в работах [2, 3] импедансным методом выполнен расчет поля точечного источника и характеристик нормальных волн на основе матричных уравнений Риккати для слоисто-неоднородной среды. Статья [4] посвящена исследованию свойств функции Грина и применению ее к изучению динамических свойств слоисто-неоднородного полупространства. В обзорной работе [5] проанализированы теоретические методы, применяемые для изучения волн Лэмба в анизотропных пластинах. Исследованию вытекающих обратных волн Лэмба в пластине, погруженной в жидкость, посвящена статья [6]. В работе установлено, что эти волны отличаются от других типов волн в изотропных средах необычными энергетическими свойствами. В публикациях [7, 8] приведены результаты, полученные с применением линеаризованной теории, учитывающей начальные напряжения в упругом теле и вязкость жидкости. Значительное практическое использование акустических волн ставит задачу изучения дисперсионных свойств квазилембовских мод в гидроупругих волноводах, состоящих из упругого полупространства и слоя идеальной сжимаемой жидкости, а также из упругого слоя и жидкого полупространства. Выявление закономерностей волновых процессов в широком диапазоне частот, охватывающем как длинноволновую, так и коротковолновую части спектра, для толщин жидкого и упругого слоев, соизмеримых с длиной волны, представляет несомненный интерес не только для теоретических, но и для прикладных исследований.

В настоящей работе для анализа дисперсионных характеристик квазилэмбовских мод в гидроупругих волноводах в широком интервале частот используются трехмерные линеаризованные уравнения Эйлера для жидкости и линейные уравнения классической теории упругости для твердого тела. При этом предполагается, что жидкость находится в состоянии покоя. В качестве подхода выбраны постановки задач и метод, основанные на применении представлений общих решений уравнений движения идеальной сжимаемой жидкости и упругого тела, предложенные в работах [9—13].

Постановка задачи. Рассмотрим задачи о распространении нормальных волн в гидроупругих системах, состоящих из упругого полупространства и жидкого слоя, а также из упругого слоя и жидкого полупространства. Решение получим с привлечением трехмерных линейных уравнений классической теории упругости для твердого тела и линеаризованных уравнений Эйлера для жидкости, находящейся в состоянии покоя. В рамках принятых моделей основные соотношения для системы изотропное упругое тело — идеальная сжимаемая жидкость будут иметь вид [9—13]:

1) упругое тело

$$\mu \Delta u + (\lambda + \mu) \nabla (\nabla \cdot u) - \rho \frac{\partial^2 u}{\partial t^2} = 0 \; ; \; \sigma_{ij} = \mu \left(\frac{\partial u_i}{\partial u_j} + \frac{\partial u_j}{\partial u_i} \right) + \lambda \delta_{ij} \nabla \cdot \mathbf{u}, \; z_k \in V_1;$$

2) идеальная сжимаемая жидкость

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0} \nabla p = 0, \ \ z_k \in V_2; \ \frac{1}{\rho_0} \frac{\partial \rho^*}{\partial t} + \nabla \cdot \mathbf{v} = 0; \ \frac{\partial p}{\partial \rho^*} = a_0^2; \ a_0 = \text{const}; \ P_{ij} = -\delta_{ij} p, \ z_k \in V_2.$$

При этом специфику взаимодействия упругих и жидких сред отражают динамические $\sigma_{ij} = P_{ij} \;,\; z_k \in S \;\; \text{и кинематические} \;\; \frac{\partial \mathbf{u}}{\partial t} = \mathbf{v}, \;\; z_k \in S \;\; \text{граничные условия, задаваемые на поверхности контакта упругих тел и жидкости } S.$

Здесь введены следующие обозначения: u_i — компоненты вектора перемещений упругого тела ${\bf u}$; ${\bf \rho}$ — плотность материала упругого тела; ${\bf \lambda}$ и ${\bf \mu}$ — константы Ляме материала упругого тела; v_i — составляющие вектора возмущений скорости жидкости ${\bf v}$; ${\bf \rho}^*$ и p — возмущения плотности и давления в жидкости; ${\bf \rho}_0$ и a_0 — плотность и скорость волны звука в жидкости в состоянии покоя; P_{ij} и ${\bf \sigma}_{ij}$ — составляющие напряжений, соответственно, в жидкости и упругом теле; V_1 и V_2 — объемы, занимаемые, соответственно, упругим телом и жидкостью; S — поверхность контакта упругой и жидкой сред.

Далее предположим, что изотропный упругий слой занимает объем: $-\infty < z_1 < \infty, \ 0 \leqslant z_2 \leqslant h, \ -\infty < z_3 < \infty$ и контактирует с полупространством идеальной сжимаемой жидкости, за-

полняющей объем: $-\infty < z_1 < \infty$, $-\infty < z_2 \leqslant 0$, $-\infty < z_3 < \infty$. В случае второй гидроупругой системы упругое полупространство занимает объем: $-\infty < z_1 < \infty$, $-\infty < z_2 \leqslant 0$, $-\infty < z_3 < \infty$ и взаимодействует со слоем идеальной сжимаемой жидкости, заполняющей объем: $-\infty < z_1 < \infty$, $0 \leqslant z_2 \leqslant h$, $-\infty < z_3 < \infty$. Примем, что внешние силы, действующие на указанные среды, распределены равномерно вдоль оси Oz_3 . В этом случае задача является плоской и можно ограничиться изучением процесса распространения волн в плоскости oz_1z_2 . Oz_3z_2 .

Воспользуемся представлениями общих решений, полученными в работах [9—13]. Для плоского случая, который рассматривается далее, общие решения будут такими:

$$u_1 = -\frac{\partial^2 \chi_1}{\partial z_1 \partial z_2} \; ; \; u_2 = \left(\frac{\lambda + 2\mu}{\lambda + \mu} \frac{\partial^2}{\partial z_1^2} + \frac{\mu}{\lambda + \mu} \frac{\partial^2}{\partial z_2^2} - \frac{\rho}{\lambda + \mu} \frac{\partial^2}{\partial t^2} \right) \chi_1 \; ; \; v_1 = \frac{\partial^2 \chi_2}{\partial z_1 \partial t} \; ; \; v_2 = \frac{\partial^2 \chi_2}{\partial z_2 \partial t} \; ,$$

где введенные функции χ_1 и χ_2 удовлетворяют уравнениям:

$$\begin{split} & \left[\left(\frac{\partial^2}{\partial z_1^2} + \frac{\mu}{\lambda + 2\mu} \frac{\partial^2}{\partial z_2^2} - \frac{\rho}{\lambda + 2\mu} \frac{\partial^2}{\partial t^2} \right) \left(\frac{\partial^2}{\partial z_1^2} + \frac{\lambda + 2\mu}{\mu} \frac{\partial^2}{\partial z_2^2} - \frac{\rho}{\mu} \frac{\partial^2}{\partial t^2} \right) - \frac{(\lambda + \mu)^2}{\mu(\lambda + 2\mu)} \frac{\partial^4}{\partial z_1^2 \partial z_2^2} \right] \chi_1 = 0; \\ & \left[\frac{\partial^2}{\partial z_1^2} + \frac{\partial^2}{\partial z_2^2} - \frac{1}{a_0^2} \frac{\partial^2}{\partial t^2} \right] \chi_2 = 0. \end{split}$$

Для упругого слоя, взаимодействующего с полупространством идеальной жидкости, задача сводится к решению системы уравнений движения упругого тела и жидкости при следующих динамических и кинематических граничных условиях:

$$\sigma_{12}\Big|_{z_2=0} = 0; \ \sigma_{22}\Big|_{z_2=0} = P_{22}\Big|_{z_2=0}; \ \sigma_{12}\Big|_{z_2=h} = 0; \ \sigma_{22}\Big|_{z_2=h} = 0; \ v_2\Big|_{z_2=0} = \frac{\partial u_2}{\partial t}\Big|_{z_2=0}. \tag{1}$$

В случае упругого полупространства, контактирующего со слоем идеальной жидкости, задача сводится к решению системы уравнений гидроупругости при таких граничных условиях:

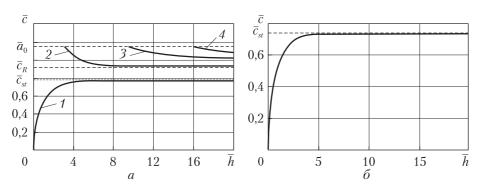
$$\sigma_{12}\Big|_{z_2=0} = 0 \; ; \; \sigma_{22}\Big|_{z_2=0} = P_{22}\Big|_{z_2=0} \; ; \; P_{22}\Big|_{z_2=h} = 0 \; ; \; v_2\Big|_{z_2=0} = \frac{\partial u_2}{\partial t}\Big|_{z_2=0} \; . \tag{2}$$

Далее параметры, характеризующие процесс распространения волн, определяем в классе бегущих волн и выбираем в виде:

$$\chi_j = X_j(z_2) \exp[i(kz_1 - \omega t)] \ (j = 1, 2),$$

где k — волновое число; ω — круговая частота; i^2 = -1.

Заметим, что выбранный в работе класс гармонических волн, являясь наиболее простым и удобным в теоретических исследованиях, не ограничивает общности полученных результатов, поскольку линейная волна произвольной формы, как известно, может быть представлена набором гармонических составляющих. В дальнейшем для каждой из гидроупругих систем решаем две задачи Штурма — Лиувилля на собственные значения для уравнений движения упругого тела и жидкости, а также определяем соответствующие собственные функции. После подстановки решений в граничные условия (1), (2) получаем



Puc. 1

однородные системы линейных алгебраических уравнений относительно произвольных постоянных. Исходя из условия существования нетривиального решения этих систем, получаем дисперсионные уравнения. Для гидроупругой системы, состоящей из упругого слоя и жидкого полупространства, дисперсионное соотношение имеет вид

$$\det \| \boldsymbol{\theta}_{lm}(c, \boldsymbol{\rho}, \lambda, \boldsymbol{\mu}, \boldsymbol{\rho}_0, a_0, \omega h/c_s) \| = 0 \quad (l, m = \overline{1, 5}), \tag{3}$$

Для упруго-жидкостной системы, жидкий слой которой взаимодействует с упругим полупространством, аналогичное уравнение будет таким:

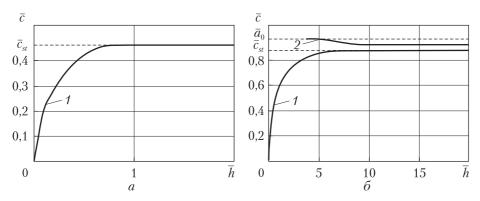
$$\det \|\tilde{\theta}_{lm}(c, \rho, \lambda, \mu, \rho_0, a_0, \omega h/c_s)\| = 0 \quad (l, m = \overline{1, 4}), \tag{4}$$

где c — фазовая скорость нормальных волн в гидроупругой системе; h — толщина упругого слоя для первой системы или толщина слоя жидкости в случае второй гидроупругой композиции; c_s ($c_s^2 = \mu/\rho$) — скорость волны сдвига в материале упругого тела; μ — модуль сдвига материала упругого тела.

Как известно, в неограниченном сжимаемом упругом теле существуют продольная и сдвиговая волны. В идеальной сжимаемой жидкой среде распространяется только продольная волна. Именно эти волны, взаимодействуя между собой на свободных граничных поверхностях, а также на поверхности контакта сред, порождают сложное волновое поле в гидроупругой системе.

Отметим, что полученные дисперсионные уравнения (3) и (4) являются наиболее общими и из них можно получить соотношения для ряда частных случаев. В частности, если a_0 устремить к бесконечности, то (3) и (4) переходят в уравнения для определения параметров мод в случае взаимодействия с идеальной несжимаемой жидкостью. Если положить $\rho_0 = 0$, тогда из уравнения (3) получим соотношение для определения скоростей волн Лэмба [1, 7, 8]. При $h \to \infty$ из равенства (3) получим уравнение, описывающее поверхностные волны Рэлея [1, 7, 8]. При $\rho_0 \neq 0$ и $h \to \infty$ равенство (4) перейдет в уравнение Стоунли — Шольте [1, 7, 8].

Числовые результаты. В дальнейшем дисперсионные уравнения (3) и (4) решаем численно. При этом расчеты проводим для двух гидроупругих систем, состоящих из реальных упругих тел и жидкости, а также для четырех систем с гипотетическими жидкостями. Первая состоит из оргстекла и воды. Она характеризуется следующими параметрами: упру-

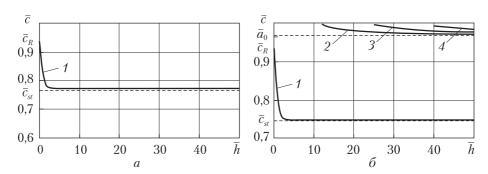


Puc. 2

гое тело — ρ = 1160 кг/м³, λ = 3,96·10° Па, μ = 1,86·10° Па; жидкость — ρ_0 = 1000 кг/м³, a_0 = 1459,5 м/с, \overline{a}_0 = a_0/c_s = 1,152595. У этого волновода материал упругого тела (оргстекло) является менее жестким. Вторая представляет собой волновод из стали и воды. При этом параметры выбираем такими: упругое тело — ρ = 7800 кг/м³, λ = 9,26·10¹0 Па, μ = 7,75·10¹0 Па; жидкость — ρ_0 = 1000 кг/м³, a_0 = 1459,5 м/с, \overline{a}_0 = a_0/c_s = 0,463021. Этот волновод отличается тем, что материал упругого тела (сталь) относится к разряду более жестких. Гипотетические жидкости выбирали такими: \overline{a}_0 = 0,9 и \overline{a}_0 = 0,97 для оргстекла, а также \overline{a}_0 = 0,97 и \overline{a}_0 = 1,05 для стали. Такой выбор позволяет численно проиллюстрировать справедливость предложенных на основании аналитического анализа дисперсионных уравнений критериев расщепления единственной поверхностной волны на множество мод, распространяющихся в гидроупругих системах.

Результаты вычислений представлены в виде графиков на рис. 1—4. На рис. 1 и 2 приведены результаты численных расчетов для упруго-жидкостной системы, состоящей из упругого слоя и жидкого полупространства. Графики, полученные для гидроупругого волновода, компонентами которого являются жидкий слой и упругое полупространство, представлены на рис. 3 и 4. При этом на рис. 1, a приведены графики для упругого слоя из оргстекла (менее жесткий материал) и воды ($\overline{a}_0 = a_0/c_s = 1,152595$), на рис. 1, δ — для оргстекла и гипотетической жидкости, скорость распространения звуковой волны в которой $\overline{a}_0 = 0,9$. На рис. 2, a представлены графики для упругого слоя из стали (более жесткий материал) и воды, а на рис. 2, δ — для стали и гипотетической жидкости со скоростью звука в ней $\overline{a}_0 = 0,97$. На рис. 1, a — 2, δ изображены дисперсионные кривые для гидроупругих волноводов, отражающие зависимости безразмерных величин фазовых скоростей квазилямбовских мод \overline{c} ($\overline{c} = c/c_s$) от безразмерной величины толщины упругого слоя (частоты) \overline{h} ($\overline{h} = \omega h/c_s$). На этих рисунках для наглядности штриховыми линиями отмечены асимптотики, к которым стремятся фазовые скорости первой и второй мод при возрастании толщины (частоты) упругого слоя \overline{h} .

На рис. 3, a-4, δ приведены результаты численных расчетов для упруго-жидкостной системы, состоящей из упругого полупространства и жидкого слоя. При этом на рис. 3, a представлены графики для упругого полупространства из оргстекла (менее жесткий материал) и воды ($\overline{a}_0=1,152595$), на рис. 3, $\delta-$ для оргстекла и гипотетической жидкости, скорость распространения звуковой волны в которой $\overline{a}_0=0,97$. На рис. 4, a даны графики для



Puc. 3

упругого полупространства из стали (более жесткий материал) и слоя воды, а на рис. 4, δ — для стали и гипотетической жидкости со скоростью звука в ней \overline{a}_0 = 1,05.

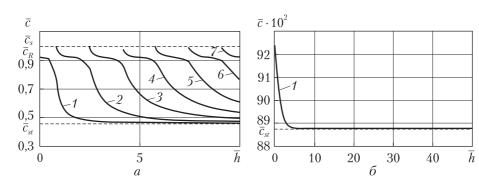
На этих рисунках изображены дисперсионные кривые для гидроупругих волноводов, показывающие зависимости безразмерных величин фазовых скоростей квазилэмбовских мод \overline{c} от безразмерной величины толщины слоя жидкости (частоты) \overline{h} . Штриховыми линиями на рисунках также отмечены асимптотики, к которым стремятся фазовые скорости первой моды при возрастании толщины жидкого слоя (частоты) \overline{h} . В верхней части рис. 3, δ штриховой линией также обозначена асимптотика, к которой стремятся величины фазовых скоростей мод высокого порядка.

Анализ числовых результатов. Графики для гидроупругой системы, приведенные на рис. 1, a, показывают, что при росте толщины упругого слоя (частоты) \overline{h} скорость первой моды стремится к скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0.7717101$) снизу, а скорость второй моды — к скорости волны Рэлея \overline{c}_R ($\overline{c}_R=0.933558$) сверху. Моды высокого порядка распространяются в упругом слое в его толще с фазовыми скоростями, стремящимися с ростом частоты (толщины упругого слоя) \overline{h} к скорости волны сдвига в материале упругого тела \overline{c}_s . При стремлении толщин упругого слоя или частот \overline{h} к частотам зарождения мод $\overline{h}=\overline{h}_{\rm kp}$ скорости их стремятся к величине скорости волны звука в жидком полупространстве \overline{a}_0 ($\overline{a}_0=1.152595$).

Графический материал для гидроупругой системы с гипотетической жидкостью ($\overline{a}_0=0,9$), приведенный на рис. 1, δ , показывает, что при росте толщины упругого слоя (частоты) \overline{h} скорость возникающей единственной первой моды стремится снизу к скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0,732467$), которая меньше скорости волны звука в жидкой среде \overline{a}_0 ($\overline{a}_0=0,9$).

Из графика для гидроупругой системы, приведенного на рис. 2, a, следует, что при росте толщины упругого слоя (частоты) \bar{h} скорость существующей единственной первой моды стремится снизу к скорости волны Стоунли \bar{c}_{st} ($\bar{c}_{st}=0.462886$), которая немного меньше скорости волны звука в жидкой среде \bar{a}_0 ($\bar{a}_0=0.463021$).

График, полученный для гидроупругой системы с гипотетической жидкостью ($\overline{a}_0=0,97$), представленный на рис. 2, δ , показывает, что при росте толщины упругого слоя (частоты) \overline{h} скорость первой моды стремится снизу к скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0,878214$), которая меньше скорости волны звука в жидкой среде \overline{a}_0 ($\overline{a}_0=0,97$), а скорость второй моды — к скорости волны Рэлея \overline{c}_R ($\overline{c}_R=0,923007$) сверху. Скорость второй моды при



Puc. 4

стремлении частоты к частоте ее зарождения $\overline{h}=\overline{h}_{\rm kp}$ стремится к скорости волны звука в жидкости \overline{a}_0 ($\overline{a}_0=0.97$).

Из графика, приведенного на рис. З, a, следует, что скорость поверхностной волны в упругом полупространстве из оргстекла (менее жесткий материал), взаимодействующем со слоем воды, изменяется от скорости волны Рэлея \overline{c}_R ($\overline{c}_R=0.933557$) при $\overline{h}\to 0$ до скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0.7717101$) при $\overline{h}\to \infty$. Как известно [14], фазовая скорость и структура волны Стоунли при взаимодействии твердого и жидкого полупространств зависят от механических параметров гидроупругой системы и определяются соотношением между скоростью волны звука в жидкости и скоростью волны Рэлея в твердом полупространстве. В рассматриваемом случае механические параметры гидроупругой системы оргстекло — вода таковы, что скорость распространения звуковой волны в жидкости \overline{a}_0 ($\overline{a}_0=1,152595$) больше скорости квазирэлеевской волны \overline{c}_R ($\overline{c}_R=0,933557$). Учитывая результаты, полученные в работе [14] для волн Стоунли, в данной гидроупругой системе это приводит к тому, что в коротковолновой части спектра мода 1, распространяясь вдоль границы раздела сред, локализуется в приконтактных областях как жидкости, так и упругого полупространства. При этом глубина проникновения этой квазиповерхностной волны (волна типа Стоунли) в упругое тело больше глубины проникновения в жидкость.

В случае гипотетической жидкости при $\overline{a}_0=0.97$ (рис. $3,\delta$) в гидроупругом волноводе распространяется множество мод. При этом скорость первой моды изменяется от скорости волны Рэлея \overline{c}_R ($\overline{c}_R=0.933557$) при $\overline{h}\to 0$ до скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0.747764$) при $\overline{h}\to\infty$. С ростом толщины слоя жидкости мода 1 трансформируется в поверхностную волну Стоунли. Нетрудно видеть, что при зарождении мод высокого порядка (при $\overline{h}=\overline{h}_{kp}$) их скорости равны скорости волны сдвига в упругом полупространстве \overline{c}_s . Далее с ростом частоты (толщины жидкого слоя) \overline{h} их скорости стремятся к скорости волны звука в жидкости \overline{a}_0 ($\overline{a}_0=0.97$). Учитывая результаты, полученные в работе [14] для волн Стоунли, в данной гидроупругой системе при $\overline{a}_0=0.97>\overline{c}_R=0.933557$ в коротковолновой части спектра мода 1, как отмечалось ранее, распространяясь вдоль границы раздела сред, локализуется в приконтактных областях как жидкости, так и упругого полупространства.

На рис. 4, a приведены дисперсионные кривые для системы упругое полупространство из стали (более жесткий материал) — слой воды. Как видно из графиков, фазовая скорость первой моды изменяется от скорости волны Рэлея \overline{c}_R ($\overline{c}_R=0.923007$) при $\overline{h}\to 0$ до скорости волны Стоунли \overline{c}_{st} ($\overline{c}_{st}=0.462886$) при $\overline{h}\to \infty$. Скорости мод высокого порядка

при частотах их зарождения $\overline{h}=\overline{h}_{\rm kp}$ равны скорости волны сдвига в упругом полупространстве \overline{c}_s и в дальнейшем с увеличением толщины жидкого слоя \overline{h} стремятся к скорости волны звука в жидкости \overline{a}_0 ($\overline{a}_0=0,463021$). Отметим, что при $\overline{a}_0=0,463021<\overline{c}_R=0,923007$, как показано в работе [14], при увеличении частоты (толщины слоя жидкости) \overline{h} глубина проникновения квазиповерхностной моды 1 (волна типа Стоунли) в жидкость значительно больше глубины проникновения в упругое тело. Поэтому низшая мода, распространяясь вдоль границы раздела сред, локализуется в приконтактной области жидкого слоя. Моды высокого порядка с ростом частоты также локализуются в жидком слое. При этом движения в этих модах при $\overline{h} \to \infty$ смещаются от поверхности слоя жидкости в его толщу.

В случае слоя из гипотетической жидкости (\overline{a}_0 = 1,05), как следует из графика на рис. 4, δ , в гидроупругой системе распространяется лишь одна поверхностная волна, скорость которой изменяется от скорости волны Рэлея \overline{c}_R (\overline{c}_R = 0,923007) при $\overline{h} \to 0$ до скорости волны Стоунли \overline{c}_{st} (\overline{c}_{st} = 0,887755) при $\overline{h} \to \infty$. В рассматриваемом случае механические параметры гидроупругой системы таковы, что скорость распространения звуковой волны в жидкости \overline{a}_0 (\overline{a}_0 = 1,05) больше скорости квазирэлеевской волны \overline{c}_R (\overline{c}_R = 0,923007). Как уже ранее упоминалось, учитывая результаты, полученные в работе [14] для волн Стоунли, в данной гидроупругой системе это приводит к тому, что в коротковолновой части спектра мода 1, распространяясь вдоль границы раздела сред, локализуется в приконтактных областях как жидкости, так и упругого полупространства.

Критерии существования квазилэмбовских мод в гидроупругих волноводах. Анализ дисперсионных уравнений, проведенные дополнительные расчеты и полученные в настоящей работе числовые результаты позволяют установить критерии существования квазилэмбовских мод в упруго-жидкостных волноводах.

В случае системы, состоящей из упругого слоя и полупространства жидкости таким критерием может служить соотношение между скоростью волны Рэлея в упругом слое и скоростью волны звука в жидкости. При $\overline{a}_0 > \overline{c}_R$, как видно из графиков, представленных на рис. 1, a (оргстекло — вода \overline{a}_0 = 1,152595 > \overline{c}_R = 0,933558) и рис. 2, δ (сталь — гипотетическая жидкость $\bar{a}_0 = 0.97 > \bar{c}_R = 0.923007$), идеальная сжимаемая жидкость не препятствует обмену энергией между поверхностями упругого слоя. Вследствие этого, в упругом слое возникает полный набор незатухающих квазилэмбовских мод высокого порядка. При этом скорость первой моды изменяется от нуля при $h \to 0$ до скорости волны Стоунли \overline{c}_{st} при $h \to \infty$. Скорость второй моды при $h \to 0$ стремится к скорости волны звука в жидкости \bar{a}_0 , а при $h \to \infty$ — к скорости волны Рэлея \overline{c}_R . Скорости мод высокого порядка изменяются от скорости звуковой волны в жидкости \overline{a}_0 до скорости волны сдвига в материале упругого тела \overline{c}_s . В случае, когда выполняется условие $\overline{a}_0 < \overline{c}_R$, идеальная жидкость препятствует обмену энергией между поверхностями упругого слоя и взаимодействию продольной и сдвиговой волн на них. При этом в упругом слое не формируются незатухающие нормальные волны Лэмба высокого порядка. В гидроупругом волноводе возникает лишь одна низшая первая мода, распространяющаяся без демпфирования вдоль границы контакта сред. Ее скорость изменяется от нуля при $h \to 0$ до скорости волны Стоунли \overline{c}_{st} при $h \to \infty$. Это подтверждают графики, представленные на рис. 1, δ (оргстекло — гипотетическая жидкость $\overline{a}_0=0,9<\overline{c}_R=0,933558$) и рис. 2, a (сталь — вода $\overline{a}_0=0,463021<\overline{c}_R=0,923007$).

В системе, компонентами которой является упругое полупространство и слой жидкости, таким критерием может служить соотношение между скоростью волны звука в жидком слое \overline{a}_0 и скоростью волны сдвига в материале твердого тела \overline{c}_s . При $\overline{a}_0 > \overline{c}_s$, как видно из графиков, представленных на рис. 3, a (оргстекло — вода \overline{a}_0 = 1,152595 > \overline{c}_s = 1) и рис. 4, δ (сталь — гипотетическая жидкость $\bar{a}_0 = 1,05 > \bar{c}_s = 1$), в гидроупругой композиции распространяется лишь одна поверхностная волна, скорость которой изменяется от скорости волны Рэлея \overline{c}_R (при $\overline{h} \to 0$) до скорости волны Стоунли \overline{c}_{st} (при $\overline{h} \to \infty$). В случае, когда выполняется условие $\overline{a}_0 < \overline{c}_{\scriptscriptstyle S}$, в гидроупругом волноводе распространяется множество квазилэмбовских мод. При этом, как следует из графиков на рис. 3, 6, в системе оргстекло — гипотетическая жидкость с параметрами $\bar{a}_0 = 0.97 < \bar{c}_s = 1$ на частотном интервале изменения h от 0 до 50 генерируются четыре моды, а в системе сталь — вода при $\overline{a}_0 = 0.463021 < \overline{c}_s = 1$ (рис. 4, a) в частотном диапазоне h от 0 до 10 распространяется без демпфирования семь мод. При этом скорость первой моды изменяется от скорости волны Рэлея \overline{c}_R при h o 0 до скорости волны Стоунли \overline{c}_{st} при $h o \infty$. Скорости мод высокого порядка изменяются от скорости волны сдвига в материале упругого тела $\overline{c}_{\scriptscriptstyle S}$ при частотах, равных частотам зарождения мод ($h=h_{{}_{\mathrm{KD}}}$) до скорости волны звука в жидкости \overline{a}_{0} при $h \to \infty$.

Таким образом, анализ полученных результатов показал, что основным критерием существования незатухающих квазилэмбовских нормальных волн в гидроупругой системе идеальное сжимаемое жидкое полупространство — упругий слой является соотношение между величинами скоростей волны звука в жидкости \overline{a}_0 и квазирэлеевской волны, распространяющейся вдоль свободной поверхности упругого слоя \overline{c}_R . При $\overline{a}_0 > \overline{c}_R$ идеальная сжимаемая жидкость не препятствует обмену энергией между поверхностями упругого слоя. Вследствие этого, в упругом слое возникает полный набор незатухающих квазилэмбовских мод высокого порядка. При $\overline{a}_0 < \overline{c}_R$ идеальная жидкость препятствует обмену энергией между поверхностями упругого слоя и взаимодействию продольной и сдвиговой волн на них. В этом случае в упругом слое не формируются незатухающие нормальные волны Лэмба высокого порядка. В гидроупругом волноводе возникает лишь одна низшая первая мода, которая распространяется без демпфирования вдоль границы контакта сред. Скорость ее при увеличении частоты (толщины упругого слоя) стремиться к скорости волны Стоунли.

В случае системы, компонентами которой являются слой жидкости и упругое полупространство, таким критерием может служить соотношение между скоростью волны звука в жидкости \overline{a}_0 и скоростью волны сдвига в упругом теле \overline{c}_s . При $\overline{a}_0 > \overline{c}_s$ в гидроупругой системе распространяется лишь одна поверхностная волна, скорость которой изменяется от скорости волны Рэлея \overline{c}_R до скорости волны Стоунли \overline{c}_{st} . В случае, когда механические параметры упруго-жидкостной системы такие, что выполняется условие $\overline{a}_0 < \overline{c}_s$, в гидроупругом волноводе происходит расщепление единственной поверхностной волны на множество квазилэмбовских мод. При этом скорость первой моды изменяется от скорости волны Рэлея \overline{c}_R до скорости волны Стоунли \overline{c}_{st} . Фазовые скорости мод высокого порядка изменяются от скорости волны сдвига в упругом теле \overline{c}_s до скорости волны звука в жидкости \overline{a}_0 .

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Викторов И.А. Звуковые поверхностные волны в твердых телах. Москва: Наука, 1981. 288 с.
- 2. Безруков А.В., Приходько В.Ю., Тютекин В.В. Расчет характеристик нормальных волн мелкого моря с упругим дном (импедансный метод). *Акуст. журн.* 1987. **33**, № 5. С. 805—813.
- 3. Безруков А.В. Некоторые особенности распространения нормальных волн в мелком море с неоднородным упругим дном. *Акуст. журн*. 1989. **35**, № 4. С. 744—747.
- 4. Белянкова Т.И., Калинчук В.В. К проблеме анализа динамических свойств слоистого полупространства. *Акуст. журн.* 2014. **60**, № 5. С. 492—504.
- 5. Кузнецов С.В. Волны Лэмба в анизотропных пластинах (обзор). Акуст. журн. 2014. 60, № 1. С. 90—100.
- 6. Nedospasov I.A., Mozhaev V.G., Kuznetsova I.E. Unusual energy properties of leaky backward Lamb waves in a submerged plate. *Ultrasonics*. 2017. **77**. May. P. 95–99.
- 7. Bagno A.M., Guz A.N. Elastic waves in pre-stressed bodies interacting with a fluid (survey). *Int. Appl. Mech.* 1997. **33**, № 6. P. 435—463.
- 8. Guz A. N., Zhuk A. P., Bagno A. M. Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review). *Int. Appl. Mech.* 2016. **52**, № 5. P. 449–507.
- 9. Guz A. N. Aerohydroelasticity problems for bodies with initial stresses. *Int. Appl. Mech.* 1980. **16**, \mathbb{N}_{2} 3. P. 175–190.
- 10. Гузь А.Н. Упругие волны в телах с начальными напряжениями: 2 тома. Киев: Наук. думка, 1986. Т. 2. $536~\rm c.$
- 11. Гузь А.Н. Упругие волны в телах с начальными (остаточными) напряжениями. Киев: А.С.К., 2004. 672 с.
- 12. Гузь А.Н. Динамика сжимаемой вязкой жидкости. Киев: А.С.К., 1998. 350 с.
- 13. Guz A.N. Dynamics of compressible viscous fluid. Cambridge: Cambridge Sci. Publ., 2009. 428 p.
- 14. Волькенштейн М.М., Левин В.М. Структура волны Стоунли на границе вязкой жидкости и твердого тела. *Акуст. журн.* 1988. **34**, № 4. С. 608-615.

Поступило в редакцию 31.03.2017

REFERENCES

- 1. Viktorov, I. A. (1981). Sound surface waves in solids. Moscow: Nauka (in Russian).
- 2. Bezrukov, A. V., Prikhod'ko, V. Yu. & Tyutekin, V. V. (1987). Calculation of normal wave characteristics in the case of shallow sea with an elastic bottom (the impedance method). Acoustic J., 33, No. 5, pp. 805-813 (in Russian).
- 3. Bezrukov, A. V. (1989). Some propagation features of normal waves in a shallow sea with inhomogeneous elastic bottom. Acoustic J., 35, No. 4, pp. 744-747 (in Russian).
- 4. Belyankova, T. I. & Kalinchuk, V. V. (2014). On the problem of analyzing the dynamic properties of a layered half-space. Acoustic J., 60, No. 5, pp. 492-504 (in Russian).
- 5. Kuznetsov, S. V. (2014). Lamb waves in anisotropic plates (review). Acoustic J., 60, No 1, pp. 90-100 (in Russian).
- 6. Nedospasov, I. A., Mozhaev, V. G. & Kuznetsova, I. E. (2017). Unusual energy properties of leaky backward Lamb waves in a submerged plate. Ultrasonics, 77, May, pp. 95-99.
- 7. Bagno, A. M. & Guz, A. N. (1997). Elastic waves in pre-stressed bodies interacting with a fluid (survey). Int. Appl. Mech., 33, No. 6, pp. 435-463.
- 8. Guz, A. N., Zhuk, A. P. & Bagno, A. M. (2016). Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review). Int. Appl. Mech., 52, No. 5, pp. 449-507.
- 9. Guz, A. N. (1980). Aerohydroelasticity problems for bodies with initial stresses. Int. Appl. Mech., 16, No. 3, pp. 175-190. doi: https://doi.org/10.1007/BF00885084.
- 10. Guz, A. N.(1986). Elastic waves in bodies with initial stresses. 2 vols. Kyiv: Naukova dumka (in Russian).
- 11. Guz, A. N. (2004). Elastic waves in bodies with initial (residual) stresses. Kyiv: A.S.K. (in Russian).
- 12. Guz, A. N. (1998). Dynamics of compressible viscous fluid, Kyiv: A.S.K. (in Russian).
- 13. Guz, A. N. (2009). Dynamics of compressible viscous fluid, Cambridge: Cambridge Scientific Publishers.
- 14. Volkenstein, M. M. & Levin, V. M. (1988). Structure of a Stoneley wave on the boundary of a viscous liquid and a solid. Acoustic J., 34, No. 4, pp. 608-615 (in Russian).

Received 31.03.2017

О.М. Багно

Інститут механіки ім. С.П. Тимошенка НАН України, Київ E-mail: alexbag2016@gmail.com

ПРО КВАЗІЛЕМБОВСЬКІ МОДИ У ГІДРОПРУЖНИХ ХВИЛЕВОДАХ

На основі тривимірних лінійних рівнянь класичної теорії пружності для твердого тіла та лінеаризованих рівнянь Ейлера для рідкого середовища досліджено поширення квазілембовських хвиль у системах шар ідеальної стисливої рідини — пружний півпростір та пружний шар — півпростір ідеальної стисливої рідини. Побудовано дисперсійні криві для нормальних хвиль у широкому діапазоні частот. Проаналізовано вплив товщини пружного і рідкого шарів на фазові швидкості та дисперсію квазілембовських мод у гідропружних хвилеводах. Запропоновано критерії існування квазілембовських мод в гідропружних хвилеводах. Числові результати наведено у вигляді графіків та дано їх аналіз.

Ключові слова: дисперсія хвиль, фазова швидкість, пружний півпростір, пружний шар, шар ідеальної стисливої рідини, півпростір ідеальної стисливої рідини, квазілембовські моди.

O.M. Bahno

S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kiev E-mail: alexbag2016@gmail.com

ON THE QUASI-LAMB MODES IN HYDROELASTIC WAVEGUIDES

The propagation of quasi-Lamb waves in the systems "layer of ideal compressible fluid — elastic half-space" and "elastic layer — half-space of ideal compressible fluid" is studied, by using the three-dimensional equations of the classical elasticity theory for a solid body and linearized Euler equations for a fluid. The dispersion curves for normal waves over a wide range of frequencies are constructed. The influence of the thickness of elastic and fluid layers on the phase velocities and the dispersion of the quasi-Lamb modes in a hydroelastic waveguides is analyzed. Criteria for the existence of the quasi-Lamb waves in hydroelastic waveguides are proposed. The numerical results are presented in the form of plots and analyzed.

Keywords: dispersion of waves, phase velocity, elastic half-space, elastic layer, layer of the ideal compressible fluid, half-space of the ideal compressible fluid, quasi-Lamb modes.