doi: https://doi.org/10.15407 /dopovidi2018.02.012
UDC 517.5

V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
E-mail: vgutlyanskii@gmail.com, star-o@ukr.net, vl.ryazanov1@gmail.com

Semilinear equations in the plane
with measurable data

Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii

We study semilinear partial dif ferential equations in the plane, the linear part of which is written in a divergence form.
The main result is given as a factorization theorem. This theorem states that every weak solution of such an equation
can be represented as a composition of a weak solution of the corresponding isotropic equation in a canonical domain
and a quasiconformal mapping agreed with a matrix-valued measurable coefficient appearing in the divergence
part of the equation. The latter makes it possible, in particular, to remove the regularity restrictions on the boundary
in the study of boundary-value problems for such semilinear equations.
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The main goal of this paper is to point out one application of quasiconformal mappings to the
study of some nonlinear partial differential equations in the plane.
Let Q be a domain in the complex plane C. It is well known that the Beltrami equation

0 =n(2)0, z€Q, (1)

1 : 1 : o . .
where @, =§(wx —iw,), 0z = E(wx +im,), z=x+iy, is turned out to be instrumental in the

study of Riemann surfaces, Teichmiiller spaces, Kleinian groups, meromorphic functions, low di-
mensional topology, holomorphic motion, complex dynamics, Clifford analysis, and control theory.

As known, a K-quasiconformal mapping o:Q — C, K >1, is just a homeomorphic Wli’cz (Q)
solution to the Beltrami equation when the measurable coefficient p satisfies the strong ellip-
ticity condition |p(z)|<(K-1)/(K+1) almost everywhere in Q. In particular, if p=0 in a
domain Q< C, then the Beltrami equation reduces to the Cauchy—Riemann equation and a
solution @ is analytic in Q, see, e.g., [1, 2], see also [3], and the references therein.

We will deal with semilinear partial differential equations

div[A(2)Vu]= f(u), (2)
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linear part of which contains the elliptic operator in the divergence form, where the matrix func-
tion A(z) is in the class M?>2(Q) of 2x2 symmetric matrix functions with measurable en-
tries a;(2), J, k=1,2,the determinant 1, and the uniform ellipticity condition

HEP <UA@EH<KIEP ae in 0 @

for every & e C, where 1< K <o . For the case of smooth A(z2), see [4, 5].

We prove the following Factorization Theorem: Every weak solution ueC le}f (Q) of
the semilinear equation (2) with arbitrary continuous f(u) can be represented as u=Tom,
where ®:Q— G cC is a quasiconformal mapping agreed with the matrix function A, and

TeCn ngf (G) is a weak solution of the semilinear Poisson equation

AT =mf(T) in G, (4)

where m(w), weG ,is the Jacobian of the inverse mapping ®~!(w). In particular, we obtain here
the semilinear Gauss—Bieberbach—Rademacher equation with the weight m(w) for the case

S(u)y=e".
1. Some definitions and preliminary remarks. Given Ae M?*%(Q), let us first consider
the second-order elliptic homogeneous equation

div(A(z2)Vu)=0 a.e. in Q. 5)
A function u is called a weak solution to the equation if

[{A(2)Vi, Vo) =0 VoeCF(Q). (6)

Q

This is meaningful at least for u e WIL’S(Q), where Wli’cp (Q) stands for the well-known Sobolev
space. Here, we will assume a little more regularity, namely that u e C N Wli)’f (Q).

Let Ae M*>%(Q) and ueC mWﬁ)’f (Q) be a weak solution to (5). Then there exists
veCn Wlf)’cz (Q) called the stream function of u, such that

0 -1
Vo=HAVu ae. in Q, WhereH:(1 O)' (7

Setting @ (z)=u(z)+iv(z) we see that o satisfies the Beltrami equation

0;(2)=u(z)m,(z) ae in Q, (8)

where the complex dilatation w(z) is given by

a9y(2) —ay1(2) —2iay5(2)
_ , 9
me) det(1+A(2)) ©)
see, e.g., Theorem 16.1.6 in [6]. The condition of ellipticity (3) now is written as
|u(z)|<§: ae. in Q. (10)
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Thus, given any Ae M 2x2 (Q), one produces by (9) the complex dilatation u(z) for which,
in turn, by the Measurable Riemann mapping theorem, see, e.g., Theorem V.B.3 in [1] and Theo-
rem V.1.3 in [2], the Beltrami equation (8) generates, as its solution, a quasiconfomal homeo-
morphism ®. We say that the matrix function A generates the corresponding quasiconformal
mapping o, or that A and ® are agreed.

Note also the useful fact that the quasiconformal mappings o admit a change of variables in
integrals, because homeomorphisms of the class Wﬁ) 62 are absolute continuous with respect to the
area measure, see, e.g., Theorem I11.6.1, Lemmas I11.2.1 and I11.3.3 in [2].

We complete this section with the following very important result on the composition opera-
tors in Sobolev spaces, see, e.g., [7—9].

Proposition 1. Let ®:Q — C be a quasiconformal homeomorphism and let ¢ : G — C belong to
the class le‘cz (Q). Then the composition function @o® e ngcz (G).

The study of the superposition operators on Sobolev spaces stems from the classical article
[10], see also, e.g., [11—13] for the detailed history and bibliography.

2. The basic identity. It is well known that every positive definite quadratic form

ds? =a(x,y)dx2+2b(x,y)dxdy+c(x,y)dy2, (11)

defined in a plane domain Q, can be reduced, by means of a suitable quasiconformal change of
variables, to the canonical form

ds? = A(du® +dv?), A=0 ae in Q (12)

provided that ac—b? > Ay>0, a>0,ae. in Q, see, e.g., [14, pp. 10-12]. This key result can be
extended to every linear divergent operator of the form div[A(z)Vu(z)], z=x+iy, with an
arbitrary matrix function Ae M>%(Q).

Namely, we have already seen by direct computation that if the function T and the entries
of A are sufficiently smooth, then

div[A@ V(T (0(2)]= Ju () AT (0(2)), z€Q, (13)

see [4, 5]. Here, J,(z) stands for the Jacobian of the mapping w(z), i.e, J,(z)=detD,(2),
where D, (z) is the Jacobian matrix of the mapping ® at the point ze€ Q. Equality (14) below
can be viewed as a weak counterpart to equality (13).

Proposition 2. Let Q be a domain in C, Ae MP*(Q) and »:Q — G be a quasiconformal
mapping agreed with A. Then the equality

JCLA@V(T(@(2))), Vo(2))dm, = [{D, (VT (0(2)), Vo(2)) ] o (2)dm, (14)
Q Q

holds for every T Wﬁ)’f (G) and forall ¢ e W01’ 2(Q).
Proof. Assuming that T e Wli) C2 (G) and that ®:Q — G is a quasiconformal mapping agreed
with A(z), we see, by Proposition 1, that u:=Towe W"2(Q). Since

loc

Vu(z)= D! (2)VT (0(2)), (15)
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where D! (z) stands for the transpose matrix to D, (z) and @ satisfies the Beltrami equation
(8), that can be written in the matrix form as

A(2)D}y(2)=Dg'(2) J»(2) (16)

we arrive successively at the required equality (14):

[CA@V(T (0(2)), Vo(2))dm, = [(ADD(VT(0(2)), Vo(2))dm, =
Q Q

17
= (D3 () VT (@(2)), Vo(2) ] o (2)dm,. o
Q

3. The main result. Let Q be a bounded domain in C and let /: R — R be a continuous func-
tion. In this section, we study a model semilinear equation

div[A(2)Vu(2)]= f(u(z)), zeQ, (18)
as well as its Laplace counterp3art:
AT (w) = J (@) (T(w)), weC=n(Q), (19)

where ®:Q — G is a quasiconformal mapping agreed with A(z) and J(w) stands for the Ja-
cobian of the inverse mapping ©™!:G — Q.
We say that a function ueCn Wli’f (Q) is a weak solution to Eq. (18) if

[(A(2)Vu(2),Vo(2)ydm, + [ f(u(2))o(2)dm, =0 VoeCWy*(Q). (20)
Q Q

We also say that a function T e Cn Wﬁ)’f (G) is a weak solution to Eq. (19) if
[VT @), Yy @)ydmy, + [ J @) (T @)y w)dm, =0 Yy eCAWy (). @1)
G G

Since J(w) is the Jacobian of the mapping @~ !(w) it is easy to verify, by performing the chan-
ge of a variable by the formula w = w(z) that the second integral in (21) is well-defined. Here,
we again made use of the fact from Proposition 1 that the composed mapping u(z)=T (®(z))
isin CAWL2(Q) if TeCnW2(G) and  is quasiconformal.

Theorem 1. Let Q be a domainin C, Ae M**(Q) and let f: R — R be a continuous function.
Then every weak solution u of the semilinear equation

div[A(2)Vu(2)]=f(u(2)), zeQ, (22)
can be represented as the composition

u(z)=T(0(2)), (23)
where ®:Q — G is a quasiconformal mapping agreed with A and T is a weak solution to the equation

AT (w)=J (@) [ (T (w)), weG. (24)
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Corollary 1. If f(u) >0, then the function T in Theorem 1 is subharmonic.
Proof. Let u be a weak solution of the semilinear equation (22) and T =wuow™'. Then
TeCn Wl‘g’f (G) by Proposition 1, and we have that

[{A@V(T (@), Vo()dm, + [ [(T (@(2))p(z)dm, =0 (25)
Q Q
forall peC mW01' 2(Q). Next, by Proposition 2,

JCA@V(T (@(2))), Vo(2))dm, = [(DG (VT (0(2)), Vo(2)) ] o (2)dm,, (26)
Q Q

and, therefore,

[Uo@DG (VT (@(2)), Vo(2))dm, + | [(T (0(2)))9(z)dm, =0 (27)
Q Q

forall pe CmWOLQ(Q) )
Given an arbitrary function w(w)eCmWoLz(G), we can set @(z)=y(®(z)) in (25) and
(26), because such e Cn WOL 2(Q) again by Proposition 1. Performing the change of a variable

in (27) by the formula z=0""(w), we obtain
[ (@™ @)D (07 (@) VT (w0), Diy(0™" () Vy (w)) ] (w) dm,, +
G
+]J @) f (T @)y @) dm,, =0.
G

Since, by elementary algebraic arguments,

(Jo(@ (@)D (0™ (@))VT (w), Dy (0~ () Vy ()=
= Jo (0~ (@)XVT(w0),Vy (0)),
and

Jo(@ (@) =1/ J(w),

we see that the identity

[T ), Yy @)y dm,, + [ J (@) f(T @)y (w)dm,, =0 (28)
G G

holds for all y(w)eCn W01’2(G). Thus, T is a weak solution to Eq. (24).

Remark 1. Inversely, since the arguments given above are invertible, we see that if T is a weak
solution to Eq. (24), then the function u(z)=T(w(z)) is a weak solution to Eq. (22). Note also
that, among the quasiconformal mappings ®:Q — G, there is a variety of the so-called volume-
preserving maps, for which J(z)=1, ze Q. If A generates such ®,then T is a weak solution of
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the quasilinear Poisson equation
AT =f(T) in G- (29)

4. The final remarks. By the Measurable Riemann mapping theorem, see, e.g., Theorem
V.B.3 in [1] and Theorem V.1.3 in [2], given W(z), zeQ, agreed with the matrix function
Ae MP2(Q), there exists a quasiconformal mapping ®:Q — G with the complex dilatation .
Here, if Q is finitely connected, then G can be chosen as a circular domain whose boundary
consists of circles or points, see, e.g., Theorem V.6.2 in [15]. If Q is simply connected with a non-
degenerate boundary, then we may assume that G is the unit disk D in C. The latter makes it
possible to remove the restrictions on the regularity of the boundary in the study of boundary-
value problems for Eq. (24).

The corresponding factorization theorems can be established for other similar semilinear
equations in the anisotropic case such as the nonlinear heat equation like

uy —div [A(9)Vu(2)] = f () (30)

(the same equation describes the Brownian motion, diffusion models of the population dyna-
mics, and many other phenomena), the nonlinear Schrédinger equation, and the nonlinear wave
equation

uy —div[A(2)Vu(2)] = f (). 31D

Namely, one can show that every weak solution in a suitable sense for semilinear equations of such
type can be factorized as the composition of a weak solution to the corresponding isotropic equa-
tion and a quasiconformal mapping agreed with the matrix function A(z) as above.
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HOJIYJIMHENHBIE YPABHEHUA HA IIJIOCKOCTH
C USMEPMMbIMU JTAHHBIMU

Wsydensl nosynunelinbie auddepeniinanbable ypaBHEHNUS B YaCTHBIX IPOU3BOIHBIX HA IJIOCKOCTH, JTUHEHHAS
YacThb KOTOPBIX MpeJICTaBIeHa B ANBepreHTHOH hopme. OCHOBHOM pe3yasTaT chOpMyINPOBAH B BUIE TEOPEMBI
dakropusaiu. Jta TeopeMa yTBEPKIAECT, uTo J000e caaboe peleHne TAKOTo YPaBHEHW TIPEACTaBUMO B BUJIE
KOMTIO3UITHN CTab0TO PETTEHTST COOTBETCTBYIONIETO N30TPOTTHOTO YPABHEHMSI B KAHOHUYECKOH 061acTi U KBasu-
KOH(OPMHOT0 0TOOPasKEHNUST, COTJIACOBAHHOTO ¢ MATPUYHO3HAUHBIM U3MEPUMBIM KOA(hMOUITMEHTOM, BXOIAIIUM B
JIMBEPTEHTHYIO YaCTh NCXOMHOTO ypaBHeHMs. CBoOo/a B BHIOOPE KAHOHNYECKO 00JIACTH TTO3BOJISIET, B YaCTHO-
CTH, CHSITb HEKOTOPbIE OTPAHUYEHUS HA PETYJSIPHOCTb TPAHUIILI TIPU UCCJIe/JOBAHUN KPAeBbIX 314 JIJI TAaKUX
[IOJIYJIMHEHHBIX YPaBHEHUI.

Knioueewie caosa: nonyuneiinvle SIUNMuueckue ypasHenus, Keasukon@popmuvie 0moopajicenus, ypasnenue
berompamu.
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HATIIBJIHIVHI PIBHAHHSA HA IIJIOIINHI
3 BUMIPHUMU TAHVMUN

Busueno namniBsiniiiHi AudepenitiaabHi piBHAHHSA B YaCTMHHUX TOXIJIHUX HA TJIONIMHI, JiHifTHA YacTHHA STKUX
mojlana B uBepreHTHINH dhopmi. OcHOBHUI pe3ynsTaT chopMyIbOBAHNH Y BUTIALL TeopeMH (GaKTOpH3aIltii.
[[s1 TeopeMa CTBEPIIKYE, 110 Oy/Ib-IKMI CIAOKUET PO3B’SI30K TAKOTO PIBHSAHHS MOYKHA TIOJATH Y BUTJISAI KOMIIO-
3uIlii ¢J1aOKOro PO3B’SI3KY BI/IIOBIZHOTO i30TPOITHOTO PIBHSAHHS B KaHOHIUHIiT 06JsacTi i KBa3iKOH(GOPMHOTO Bi-
NOGPasKEeHHSI, Y3rOKEHOT0 3 MATPMYHO3HAYHIM BUMIiPIOBAaHUM KOe(illiEHTOM, KWl BXOJAUTH J0 [UBEPTEHT-
HOI yacTuiu BuxigHOro piBHaAHHA. CBOGOAA y BUOOPI KAaHOHIYHOI 061aCTi JO3BOJIAE, 30KPEMa, 3HATH JesKi 00-
MesKeHHsI Ha PeryJIsipHiCTb FPAHMIL [IPHU TOCJII/PKeHH] KPailoBUX 3a/1a4 /IJIs1 TAKMX HAIliBJIIHIHHUX PiBHSIHb.

Kntouoei crosa: nanieniniini exinmuuni pignsnins, keasikongopmmi gidobpaxcenns, pisnsmns Bervmpami.
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