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A method for construction of exact solutions to the nonlinear heat equation u, = (F (wu,),. + G (wu, + H (u),
which is based on the ansatz p(x) = ® (1) ¢(u) + 0,(1), is proposed. The function p(x) is a solution of the equation
(v')? = Ap? + B, and the functions o ,(t), ©,(t) and ¢(u) can be found from the condition that this ansatz reduces
the nonlinear heat equation to a system of two ordinary differential equations with unknown functions o ,(t) and

0,(1).

Keywords: group-theoretic methods, exact solutions, nonlinear heat equation, generalized variable separation.

1. Introduction. The paper is devoted to the construction of exact solutions of the nonlinear heat
equation

- [P( >—} +G 2 Hew. (1)

t Ox ox

This equation for G(u)=const describes the unsteady state heat transfer in a medium that is
moving with a constant velocity, where the thermal conductivity coefficient and the reaction
speed coefficient are arbitrary functions of the temperature. The soliton solutions of Eq. (1) are
presented in [1].

In the case G(u) =0, we have

ou 0 ou

at ax[F(”)ax}H(”)’ @)
which describes the unsteady state heat transfer in an unmovable medium. The group classifica-
tion of a class of equations of this type and exact solutions for different functions F(u) and H(u)
are presented in [1-5].

In this paper, we propose a method for constructing new exact solutions of Egs. (1) and (2).
To solve these equations, we use the ansatz

p(x) =0 (1) o) +wy (1), )
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which contains the unknown functions ®;(¢), wy(¢), and @(u), whereas the function p(x) isa
priori predefined. Assume that p(x) is a solution of the equation

()" =Ap® +B,
and then determine the functions ®(¢), wy(¢), and @(u), using the reduction idea. Namely, as-
sume that ansatz (3) reduces the given equation to a system of two ordinary differential equations
with unknown functions ®(¢) and ®,(¢). This approach gives a description of a class of equa-
tions of the forms (1) and (2) that have solutions of the form (3), as well as an effective technique
for constructing such solutions. An ansatz of the form (3) is used in [6, 7] for constructing exact
solutions of nonlinear wave equations and Korteweg—de Vries equations.

2. Exact solutions of Eq. (1). In this section, we determine the functions F(u), G(u), and
H(u), for which Eq. (1) has solutions of the form

x =0 (t)o(u)+ 0y (1), (4)

i.e. admits ansatz (4). This ansatz contains the three unknown functions w;(¢), wy(¢),and @(u).
These functions will be determined from the condition that ansatz (4) reduces Eq. (1) to a system
of two ordinary differential equations with the unknown functions o((¢)and w,(¢) . In order to
obtain this system, we substitute relation (4) into Eq. (1):

AT IA FT o o
(@) (@) Jo” O 9

If there exists a solution of Eq. (1) of the form (4), then the obtained Eq. (5) means that the
functions

LR A g
¢ (9") (¢)" ¢

9@
(pl

are linearly dependent. The functions 3,, i, are linearly independent, so all other functions (6)
o ¢

should obey the condition that they are representable as a linear combination of the functions

2,, i, We have
¢ 1 ¢ 1
FE = Ly ™
@) (@) e e
G=kyp+n,, (8)
1
H=hy Lty —, )
¢ ¢
for some A;, pn; € R. Substitute (7)—(9) into Eq. (5):
o A A ©y 1
~2L_ S22, E,Jr __2_“_12_“_2_HS —=0. (10)
O o O ¢ O o O ¢

. 1 . . . .
The functions 2, and — are linearly independent, so Eq. (10) splits into a system of equations
¢
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@_1+Lg+h+x3 ~0, (11)
O o O

—+“—12+”—2+u3 0. (12)
O o O

Let F'(u)#0. Integrating Eq. (7), which is linear with respect to the function F = F(u), we
find

F =0y [odu+pgu+ A) o) (13)
where A is an arbitrary constant. As a result, we can formulate the following theorem.

Theorem 1. Let F'(u)#0 in Eq. (1). If Eq. (1) admits ansatz (4), then the functions F(u), G(u),
and H(u) are defined by formulas (13), (8), and (9), respectively, whereas o;(¢)and w,(t) are so-
lutions of the system of equations (11), (12).

In accordance with Theorem 1, the function @(u) in ansatz (4) is arbitrary, whereas the func-
tions F(u), G(u), and H(u) can be represented via the function ¢(u). Finding solutions of the

form (4) of Eq. (1) is reduced to integrating the system of equations (11), (12). Rewrite this sys-
tem in terms of new functions v, and v,,

Then this system transforms to

0 = 7\1013 +7\.2U12 +7L3()1, (14)

i 2 2
Uy = (Moy” +hgvy +h3)09 +1401" + Ho0y + 13 (15)

Consider three possible cases.
a) Case & #0, Ay =A3 =0. Equation (1) has the form

ou _ 0 ou 1
ou LN 16
o Gx[ () }‘Mza “3(p' (16)
where the function F (u) is defined by formula (13). The general solution of system (14), (15) for
7\42 = }\43 = O iS
1
op =[=20(t+¢)] 2,

1
0=~ ;tiJrMQt[ 20 (t+cp)] z_g[ 2]+ [=20(E+e)] 2,
) 1

where ¢, and c, are arbitrary constants. As a result, we have the following solution of Eq. (16):

(P(U):[—27“1(t+c1)]_%x+%—!~l2t[ 204 (t+cp] : + [ 2h(t+ey)]-c [—27b1(f+c1)]_%- (17)
1

Setting py =py =pg =0 and ¢, =0 in (17), we obtain automodel solutions
1

o) =[-21(t +¢)] 2 (18)
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to the equation
ou 0 ou
—=—|F(u)—|, 19
o 6x[ (”)ax} (19)
where the function F (u) is defined by formula (13). Solutions of the form (18) are studied in [5].

b) Case Ay =Xy =0, A3 #0. The general solution of system (14), (15) is defined by the for-
mulas

0y =cpexp(igl),

Uy = u}i—clexp(”»gt) + Wocitexp(rst) — ;—3 + ¢y exp(Agl).
3 3

Equation (1) in this case becomes

ou 0 ou ou 1
—=—| (Wu+A)' — |+ 1y —+—(A30+n3), 20
ot ax[(m )P ax} Ho o (P'( 30+u3) (20)
and has the following family of solutions:
2
o (1) = corexp (hat) — u}t—1exp(2k3t) — pocit exp(hgt) + ;—3 —cyexp(hat). (21)
3 3
When we set p, =0 in (21), we obtain a family of solutions
e u
¢(u) =cjxexp (M,t)—%exp (27»3t)+x—3—c3 exp(Ast).
3 3
to the equation
ou o0J oul 1
—=—(nu+A)'— |+ —(A30+13), 22
~ ar _(m )P o | (p,( 30+ H3) (22)

c) Case & =0, Ay #0, A3 #0. In this case, Eq. (1) has the form

u_o
ot ox

i ,ou | ou 1
(u+A)Q' — [+ (A30+ 1y ) —+—(A30+3), (23)
L ox | ox

and the general solution of system (14), (15) is defined as
A3y exp(hst)
¢y —hocy exp(hgt)’

_ HyAgeq exp(Ast)
Ay €y =hgcyexp(Agl)
exp(Ast) B
Cy = Aoy exp(hgt)

02:

Incy —hgcy exp(hgt)|+

+ (Hohg —ghy eyt

B H3Co L+ Mac3exp(Asl)
A3(Cy —hocrexp(hgt)) €y —hocyexp(hst)
Substituting these expressions for v, and v, into ¢(u) = v,x — v,, we obtain solutions of
Eq. (23).
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3. Exact solutions of Eq. (2). In order to construct exact solutions of Eq. (2), we can use the
substitution

p(x) =0 () w), (24)
where p(x) is a solution of the equation
(p)?=Ap*+B, A#0, B#0.

Determine the functions o;(¢) and ¢(«) from the condition that ansatz (24) reduces Eq. (2) to
an ordinary differential equation with the unknown function ,(¢). Then we obtain the following
system of equations for determining the functions F(u), ¢(u)

n 1
F-2 _4F =2 (25)
@’ (@? ¢
2 1 2
FAY Y P APy FAT L H =0y 2 (26)
(¢") (¢) ¢ )

where Ay, A5 € R. Suppose that F'(u) # 0. Then, integrating Eq. (25), which is linear with respect
to the function F= F(u), we have

F =(k2j¢du+c1)(p', (27)

where ¢, is a constant. The function o;(¢) can be determined from the equation

OBy =0, (28)
(O] 0)1

In the case A5 # 0, the solution of (28) is the function
2_0 A

o =—2exp(—-2iqt)——=B,
=y p(=2A3t) "

where ¢, is a constant. In the case A3 =0, the solution is

2 e
(,l)1 = 27\.2Bt+C2,

where ¢, is a constant, and A, #0.
From Egs. (25) and (26), we have

H =i,(—x2A<p3 — AFQ+130). (29)
®

As a result, we formulate the next theorem.

Theorem 2. If Eq. (2) admits ansatz (24) and if F'(u) # 0, then the functions F(u) and H(u)
are defined by formulas (27) and (29), respectively, whereas the function o(t) is a solution of
Eq. (28).

The obtained solutions of Eq. (2) can be generalized by means of the substitutions

¢(u)=oy(t)ch[k(x+c3)]+0y(¢)sh[k(x+c3)], (30)
if A=k>>0,
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and
9(10) = @y (0 cos - (x+5) ]+ on(D)sin[k(x+ )],
if A=—k?<0.
For example, consider substitution (30). If the functions F(«) and H(u) are defined by for-

mulas (27) and (29), respectively, and A=%% >0, then substitution (30) reduces Eq. (2) to the
system

®] = (~Aok?0f + Lok 030 + A0, , (31)

0y = (—X2k2w% +l2k2w§ )0y +A3my, (32)
Let o; #0. From Egs. (31) and (32), we derive that ®, =cw, ¢ is a constant. Equation (31)
becomes

o] == Lok (2 =)o} + 130 (33)
If X4 #0, then the solution of Eq. (33) is

-1
2 :{;—Zexp(—Zkgt)—i—zkz(CQ —1)} ,
3 3

where ¢, #0 is a constant.
The solution of Eq. (2) is

—

o(u) = {;—Zexp(—Z?»St)—i—;k?(CQ —1)]2 [ch[k(x+c3)]+c-sh[k(x+c3)]].

If X4 =0, then the solution of Eq. (33) is
of =[-20k (2 =)t +¢o 7Y,

where ¢, isaconstant and Ly #0.
As aresult, we have the following solution of Eq. (2):

1
Q1) =[-2hok* (¢* =)t +0y] ? [ch[R(x+c5)]+c-sh[k(x+c5)]].
The case o =0 reduces to integrating the equation
03,2 = 7\.2k2®§ + )\430)2 .

4. Conclusion. We have described equations of the form (1) that admit ansatz (4). The func-
tions F(u), G(u), and H(u) in Eq. (1) can be represented in terms of ¢(u), and the corresponding
system for finding ®;(¢) and ®,(¢) can be integrated. A voluntary choice of the function ¢(u)
in ansatz (4) allows one to find solutions of Eq. (1), that should satisfy predefined conditions. All
this is true also for Eq. (2), which is a special case of Eq. (1). Moreover, ansatz (24) gives essen-
tially new solutions of Eq. (2).

The techniques of constructing the solutions of Egs. (1) and (2) described in Sections 2 and
3 can also be efficiently applied for constructing the solutions of plenty more equations, for ex-
ample, nonlinear wave equations [7].
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[IPO TOYHI PO3B’S3KM1 HEJITHIMHOI'O PIBHAHHA TEILJIOIIPOBIIHOCTI

3anporoHoBaHo MeTO/ T06Y/I0BH TOUHKX PO3B’A3KIB HeJliHiitHOro piBHAHNA Temtonposignocti u, = (F(u)u,), +
+ G(u)u + H(u), sKknii IPyHTYETbCS Ha BUKOPUCTAHHI IiZICTaHOBKU p(x) = (L) @ (1) + w4y(1), ne dyHKIig p(x)
€ po3B’sa3koM piBHaHHEA (p')2 = Ap? + B, a pynkii ® (1), 0,(t) Ta O(1) 3HAXOAATLCA 3 YMOBH, 1[0 JlaHa Mi/[CTaHOB-
Ka PelyKy€ PiBHAHHA J0 CUCTEMM IBOX 3BMYaiiHUX Au(epeHIialbHUX PiBHAHD 3 HeBitoMuMu QyHKLIiaMU o (1)
Ta y(7).

Kmouo6i croea: meopemuxo-zpynosi memoou, mouni po3e’ssxu, Heinitine pisHanis menionposionocmi, Y3azain-
HeHe PO3OLNEeHHS SMIHHUX.
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O TOYHBIX PEIEHUAX HEJTMHEMHOTO YPABHEHU S TEILJIOIIPOBO/IHOCTU

[Ipenmnosken METOZ MOCTPOEHMS TOYHBIX PelleHnil HeTMHEHOTO ypaBHEHHS TEMLIONPOBOAHOCTH U, = (F(u)u ), +
+ G(w)u, + H(u), 0cHOBaHHDII Ha MCIIOAb30BAHMU LOACTAHOBKY p(X) = (L) ¢(u) + 0,(t), Tae Gynkuma p(x)
ABJIAeTCA pellienneM ypaBHeHus (p')% = Ap? + B, a GyHKINH (1), ®y(?) 1 ¢(1) HAXOAATCS U3 YCJIOBHUS, 9TO TaH-
Hasl MOACTaHOBKA PEAYIUPYET YpaBHEHUE K CHCTEME ABYX OOBIKHOBEHHBIX AU dOEPEHIIMANbHBIX YPaBHEHUIT ¢
HEM3BECTHBIMU QYHKIIAME @4 (1) 1 0y(1).

Kntoueewte cnosa: meopemuxo-zpynnogvle Memoovl, MouHble Peuenusl, HeIUHelnoe Yypasteie menionposooHoc-
mut, 0000wennoe paseienue nepemenioLx.
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