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We study the Hilbert boundary-value problem for the Beltrami equations in the Jordan domains satisfying the quasi-
hyperbolic boundary condition by Gehring—Martio, generally speaking, without the standard (A)-condition by
Ladyzhenskaya— Ural tseva. Assuming that the coefficients of the problem are functions of countable bounded va-
riation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of its
solutions. As consequences, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré
boundary-value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.
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1. Introduction. Let D be a domain in the complex plane C, and let w: D — C be a measu-
rable function with |j.L(Z)| <1 a.e. The equation of the form

=)/, (D
where fzzgfz(fx+ify)/2, L:=9f=(f,~il,)/2, z=x+iy, [, and f, are partial deriva-

tives of f with respect to x and y, is said to be a Beltrami equation. Equation (1) is called non-
degenerate if ||, <1. Homeomorphic solutions f of the nondegenerate equation (1) in the class
lef are called quasiconformal mappings (see, e.g., [1]).

D. Hilbert studied the boundary-value problem formulated as follows: To find an analytic
function f(z) in a domain D bounded by a rectifiable Jordan contour C that satisfies the
boundary condition

li_)n%Re{Wf(Z)}ﬂP(C) vEe, (2)
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where both the coefficient X and the boundary data ¢ of the problem are continuously differen-
tiable with respect to the natural parameter s on C. Moreover, it was assumed by Hilbert that
A#0 everywhere on C.

The latter allows us with no loss of generality to consider that |A|=1 on C. In this case,
the quantity Re {Af} from the left in (2) has the geometric sense as a projection of f onto the
direction A interpreted as vectors in R?.

Historic comments in the subject can be found in the recent paper [2]. In the present paper,
we study the Hilbert boundary-value problem for the Beltrami equation and find its regular so-
lutions in the class of quasiconformal functions F represented as a composition of analytic func-
tions A and quasiconformal mappings f satisfying (2).

Proceeding the above, the problem under consideration is to find quasiconformal functions
satisfying both the Beltrami equation (1) in a Jordan domain D and the Hilbert boundary condi-
tion (2). We substantially weaken the regularity conditions both on the functions A and ¢ in the
boundary condition (2) and on the boundary C of the domain D . On the one hand, we will deal
with the coefficients A of a countable bounded variation and the boundary data ¢, which are
measurable with respect to the logarithmic capacity, see the corresponding definitions in our previ-
ous paper [3]. On the other hand, we study here the Hilbert boundary-value problem in domains
D with a more general boundary condition, see discussions in the next section.

2. On the quasihyperbolic boundary condition. Let D be adomainin C. Asusual, 2, (z, z;)
denotes the quasihyperbolic distance between points z and z, in D

ds
kp(z, zy) =inf | ———— 3
PRI { d (g aD)
introduced in work [4]. Here, d(,0D) denotes the Euclidean distance from the point {e D to
oD, and the infimum is taken over all rectifiable curves y joining the points z and z, in D.
Further, it is said that a domain D satisfies the quasihyperbolic boundary condition if

4(2,9D) 1 e p (4)

kD(Z, 20)< alnm

for constants @ and b and a point z,e D. The latter notion was introduced in [5], but it was
first applied in [6].

Recall also that the images of the unit disk I ={ze C:|z|<1} under the quasiconformal map-
pings of C onto itself are called quasidisks, and their boundaries are called quasicircles or quasi-
conformal curoves. It is known that every smooth (or Lipschitz) Jordan curve is a quasiconformal
curve, and, at the same time, quasiconformal curves can be locally nonrectifiable, as it follows from
the known examples (see, e.g., point I1.8.10 in [1]).

Remark 1. Quasidisks D satisfy the quasihyperbolic boundary condition. Indeed, as is well
known, the Riemann conformal mapping ®w: D — D is extended to a quasiconformal mapping of
C onto itself (see, e.g., Theorem 11.8.3 in [1]). By one of the main Bojarski results, the derivatives
of a quasiconformal mapping in the plane are locally integrable with some power ¢ >2, and its
Jacobian J(w)=|o, [* |0, [* (see [1]). Consequently, Je L”(D) in this case for some p>1,
and we have the desired conclusion by the criterion in Theorem 2.4 [7].
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Recall that a domain D in R", n>2, is called satisfying (A)-condition if
mes DAB(,p) < Ogmes B(,p) V(edD, p<p, (5)

for some ©, and p, e (0,1) (see 1.1.3 in [8]). Recall also that a domain D in R", n>2, is said
to be satisfying the outer cone condition if there is a cone that makes possible to be touched by
its top to every boundary point of D from the completion of D after its suitable rotations
and shifts. It is clear that the outer cone condition implies (A)-condition. It is well known that
the above conditions are standard in the theory of boundary-value problems for the partial dif-
ferential equations.

Remark 2. Note that quasidisks D satisfy (A)-condition. Indeed, the quasidisks are the so-
called QED — domains by Gehring—Martio (see Theorem 2.22 in [9]), and the latter satisfy
the condition

mes DN B(L, p) > 0,mes B({,p) V{eodD, p<diamD (6)

for some ©, € (0,1) (see Lemma 2.13in [9]), and quasidisks (as domains with quasihyperbo-
lic boundary condition) have boundaries of the Lebesgue measure zero (see, e.g., Theorem 2.4 in
[7]). Thus, it remains to note that, by definition, the completions of quasidisks D in the extended
complex plane C:=C Ufeo} are also quasidisks up to the inversion with respect to a circle in D .
As we know, the first example of a simply connected plane domain D with the quasihyperbolic
boundary condition, which is not a quasidisk, was constructed in Theorem 2 [6]. However, this
domain satisfied (A)-condition.

Remark 3. Probably one of the simplest examples of a domain D with the quasihyperbolic
boundary condition and without (A)-condition is the union of 3 open disks with radius 1 cente-
red at the points 0 and 1£i. It is clear that the domain has zero interior angle at its boundary
point 1, and, by Remark 2, it is not a quasidisk. Note that oD is almost smooth. Thus, there exist
almost smooth Jordan curves (see (5) in [3]) with the quasihyperbolic boundary condition that
are not quasiconformal curves.

3. The Hilbert problem for the Beltrami equation. Let D be a Jordan domain with a tangent
at a point ¢e 9D . A path in D terminating at { is called nontangential if its part in a neighbor-
hood of € liesinside of an anglein D with the vertex at {. The limit along all nontangential paths
at { is called angular at the point. The latter notion is a standard tool for the study of the boun-
dary behavior of analytic and harmonic functions (see, e.g., [10]).

Theorem 1. Let D be a_Jordan domain with the quasihyperbolic boundary condition, and let
0D have a tangent q.e. Suppose that \: D — C isin L”(D) with |u|..<1, A:0D = C,|A({)|=1, is
in CBY(dD), and ¢:0D — R is a measurable function with respect to the logarithmic capacity. Then
the Beltrami equation (1) has a regular solution [ :D — C with the angular limit

an;Re[TOf(z)]=¢(C) ge.on dD. (7)

Proof. Let g be a conformal mapping of D onto I that exists by the Riemann mapping
theorem (see, e.g., Theorem I1.2.1 in [11]). Setting, in the unit disk D,

v(w) :=(u%}>g‘1(w) , (8)
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we see that ve L”(D) and || VIl.=llut]l..<1. Hence, by the Measurable Riemann Mapping theo-
rem (see, e.g., [1]), there is a quasiconformal mapping G of D onto itself, G(0)=0, satisfying
the Beltrami equation G =v(w)G,, a.e.in D. By the reflection principle (see, e.g., Theorem 1.8.4
in [1]), G can be extended to a quasiconformal mapping G of C onto itself. Both functions
G.:=G|yp and G- ! are Holder continuous (see, e.g., [1], Theorem I1.4.3). Now, by the Carathéo-
dory theorem (see, e.g., Theorem 11.3.4 in [11]), g is extended to a homeomorphism g of D onto
D. By Corollary of Theorem 1 in [6], g« =& |, and its inverse function are Holder continuous.
Thus, the mapping /. :=Gs o g« :dD — dD and its inverse are also Holder continuous. In particu-
lar, then A:=Aohle CBY(OD) and ®:=¢@oki' is measurable with respect to the logarithmic
capacity by Remark 1 in [3]. Next, by Theorem 1 in [3], there is an analytic function A: D — C
that has the angular limit

lim Re{A (M) A(®)} =@ (1) g.e. on ID. 9)
-

Setting h:=Gog, we see by an elementary computation that 4, =G, 0g(z)g’(z) and h, =
Gpog(2)g’(2) ae.in D, ie. h isa quasiconformal mapping of D onto D satisfying Eq. (1)
ae.in D.

Let us consider the function f:= Ao h. Since f, = A’ oh(z)h, and f. = A" oh(z)h, a.e.in D,
we see that [ satisfies the Eq. (1). On the other hand, the mapping f is continuous, open, and
discrete, and, therefore, f is the regular solution of (1). It remains to show that f satisfies also
the boundary condition (2). Indeed, by the Lindeléf theorem (see, e.g., Theorem I1.C.2 in [10]), if
oD has a tangent at a point {, then arg[g({)-g(z)]—arg[{—z]— const as z—{. In other
words, the images under the conformal mapping g of sectorsin D with a vertex at { are asymp-
totically the same as sectors in ) with a vertex at w =g ({). Consequently, nontangential paths
in D are transformed under g into nontangential paths in I and inversely q.e. on dD and oD
respectively, because D is almost smooth, and g, and g;! keep sets of logarithmic capacity zero.
Moreover, it is known that the distortion of angles under a quasiconformal mapping is bounded
(see, e.g., [1]). Hence, the mapping G : C — C and its inverse also transform nontangential paths
into nontangential paths, and G, and Gi' keep sets of logarithmic capacity zero. Consequently,
h:D—D and A" :D— D also transform nontangential paths into nontangential paths q.e. on
oD and 9D respectively. Thus, (9) implies the existence of the angular limit (2) q.e. on D .

4. On Dirichlet, Neumann, and Poincaré problems. Recall that (see, e.g., Theorem 16.1.6 in
[12]) if f =u+iv is a regular solution of the nondegenerate Beltrami equation (1), then the fun-
ction u is a continuous generalized solution of the divergence type equation

divA(z)Vu =0 (10)
and is called the A-harmonic function, where A(z) is a matrix function:

[1-p () -2Imp(z)

2 2
A()= @ =@ (11)
“2Imp(2) |[1+p(2)f

=lp@ P 1=l
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As we see, the matrix function A(z) in (11) is symmetric, det A(z) =1, and its entries a; = a; (2)
I+ u@|

=lu)|
tion (1) is not degenerate. Vice versa, the uniformly elliptic equations (10) with symmetric A(z)
and det A(z)=1just correspond to the nondegenerate Beltrami equations (1) with the coefficient

(12)

are dominated by the quantity K, (z)= Thus, they are bounded if Beltrami’s equa-

1 ayy — Ay —2ia
= (ayy —ay —2iay, ) =221 2L
det(I+A)( 2 = A ) = et A

u

We denote by B the collection of all such matrix functions A(z) Recall that Eq. (10) is
said to be uniformly elliptic if a; € L” and (A(zn,m) >¢|n 2 for some € >0 and for all ne R?.

Corollary 1. Let D be a domain in C with the quasihyperbolic boundary condition, and let 9D
have a tangent q. e. Suppose that A€ B and ¢:9D — R is measurable with respect to the logarith-
mic capacity. Then there exists an A-harmonic function u: D — R with the angular limit

lim u(z)=0() g.e.ondD. (13)
-1

Theorem 2. Let D be a domainin C with the quasihyperbolic boundary condition, and let 0D
have a tangent q. e. Suppose that A(z), ze D, is a matrix function in the class BNAC%, o.e (0,1),
v:9D - C, |v(0)|=1, is in the class CBY and ¢:9D — R is measurable with respect to logarithmic
capacity. Then there exists an A-harmonic function u: D — R in the class C™** with the angular limit

lima—u(z) =@() g.e.onadD. (14)
7¢OV

Proof. By the above remarks, the desired function u is the real part of a solution f in the
class Wli’cl for the Beltrami equation (1) with pe C* given by formula (12). By Lemma 1 in [13],
u is extended to a Holder continuous function , : C — C of the class C*. Set k=max |u(z)|<1
in D . Then, for every k. (k, 1), there is an open neighborhood U of D, where |p«(2)|< k. Let
D, be a connected component of U containing D .

By the Measurable Riemann Mapping Theorem (see, e.g., [1]), there is a quasiconformal map-
ping h: D. — C a.c. satisfying the Beltrami equation (1) with the complex coefficient {1 = 1 | D.
in D, . Note that the mapping % has the Hélder continuous first partial derivatives in D, with
the same order of the Holder continuity as  (see, e.g., [14]). Moreover, its Jacobian

J(2)20 Vze Ds, (15)

(see, e.g., Theorem V.7.1 in [1]). Thus, the directional derivative

#0 Vze D: VoedD,

_oh .. h(z+to)-h(2)
(2)= 20 D= fim ¢

and it is continuous in the collection of the variables me 0D and ze D, . Thus, the functions

|hv(§)(c.,)| (p(C)
— . d % =—
Iy (©) nd O | 7y ) (©) |

are measurable with respect to the logarithmic capacity.
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The logarithmic capacity of a set coincides with its transfinite diameter (see, e.g., point 110
in [15]). Moreover, quasiconformal mappings are Hélder continuous on compacta (see, e.g.,
Theorem I1.4.3 in [1]). Hence the mappings A and A~! transform sets of logarithmic capacity zero
on 9D into sets of logarithmic capacity zero on 9D, where D :=h(D), and vice versa. Further,
the functions N :=vsoh ™! |aD* and @ =@ ok ‘aD* are measurable with respect to the logarith-
mic capacity. Indeed, a measurable set with respect to the logarithmic capacity is transformed
under the mappings # and A~! into measurable sets with respect to the logarithmic capacity.
Really, such a set can be represented as the union of a sigma-compactum and a set of logarithmic
capacity zero. On the other hand, the compacta are transformed under continuous mappings into
compacta, and the compacta are measurable with respect to the logarithmic capacity.

Recall that the distortion of angles under quasiconformal mappings # and A 'is bounded
(see, e.g., [1]). Thus, nontangential paths to dD are transformed into nontangential paths to oD
for a.e. {e dD with respect to the logarithmic capacity and inversely. By Theorem 3 in [3], one
can find a harmonic function U: D" — R that has the angular limit

i}ingaa_jl\]/ (w)=®(E) ge.ondD . (16)

Moreover, one can find a harmonic function V in the simply connected domain D* such that
F=U+iV is an analytic function and, thus, u:=Ref=Uoh, where f:=Foh, is a desired
A-harmonic function in Theorem 2, because f isa regular solution of the corresponding Beltrami
equation (1) and

uv:(VUoh,hV>:<V*VUoh,v*hV>:<§—j[\]/_oh,v*hv>: oh Re(vehy).

oU
oN

The following statement concerning the Neumann problem for A-harmonic functions is a par-
tial case of Theorem 2.

Corollary 2. Let D be a domainin C with the quasihyperbolic boundary condition, and let 0D
have a tangent q.e. Suppose that A(z), ze D, is a matrix function in the class BAC%, oe (0,1),
the interior unit normal n=n(() to oD isin the class CBV, and ¢:9D — R is measurable with re-
spect to the logarithmic capacity. Then there is an A-harmonic function u: D — R of the class C1™®
such that there exist q.e. on oD :

1) the finite limit along the normal n({)  u({):=limu(2);
z¢

i A(CH =0 (©)

t—0 t

2) the normal derivative g_u )= =@(0);
n
. . ou ou
3) the angular limit ~ lim — (z2) =— (0).
PENe ) on
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ITPO KPAMOBI 3AJIAUI B OBJIACTSX BE3 (A)-YMOBMU

Busueno kpaiioBy 3azauy libbepTa st piBHSAHb Besibrpami B )KOPAAHOBUX 06JIACTSX, SIKI 3aJ0BOJBHSIIOTH KBa3i-
rinepbostiuHy KpaiioBy yMoBy Iepinra—Maptio, B3arasi kaxyuu, 6e3 craHaaptHoi (A)-ymMoBu JlanmKeHChKOT—
YpanbiieBoi. 3 IPUIYIIEHHSIM, 10 KoebillieHTH 3a1a4i € HYHKIISIMHU 3TiYeHHO-00MeKeHO0i Bapiallii i rpaHuyHi
JIaHi € BUMIPHUMHU BiTHOCHO JIoTapuMidHOi EMHOCTI, I0BEIEHO ICHYBaHHS PO3B’sI3KiB IIi€l 3amaui. Ak Hacaigku
OTPUMAHO iCHYBaHHS HEKJIACHYHUX PO3B’sA3KiB KpaiioBux 3a1a4 [lipixie, Heiimana i [Tyankape a1 y3araabHeHD
piBHsHHS Jlanaca B aHI30TPOITHUX i HEOJHOPITHUX CePeIOBUIIAX.

Kmouogi crosa: xpaiiosi sadaui linvbepma, /[ipixne, Heiimana i [lyanxape, piensnuns bexvmpami, K6asikongopm-
i ymkyii, Kymosa zpanuys, Keasizinepboniuna Kpatiosa Ymoea, 102apuQmivna EMHicms.
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O KPAEBBIX 3ATAYAX B OBJIACTAX BE3 (A)-YCJIOBUA

Wsyuena kpaesas 3agada [mnbbepra s ypaBHeHUi BebrpaMul B JKOPAAHOBBIX 00JACTSX, YAOBIETBOPAIONIINX
KBa3sUTUTIEPOOTINIECKOMY KpaeBoMy ycioBHuio leputra—Maptio, Boobie roBopst, 6e3 cranmaptHoro (A)-yc-
goBud JlagpikeHckoii— YpasbiieBoii. C mpeanosoxenueM, 4To KoahhUIMEeHTH 3a1a4 SBISIOTCSI (QyHKIUSIMA
CYETHO-OTPAaHMYEHHON BapHaIliy, a TPAHNYHBIE TaHHBIE U3MEPUMBI OTHOCUTEIBHO JIOTapiu(MUIeCcKOi eMKOCTH,
JIOKA3aHO CYyTIeCTBOBaHUE PellleHnl aTOH 3a/1aun. B KauecTBe cyieZICTBUH MTOYyYEHO CYTeCTBOBAHUE HEKJIacCuie-
CKHUX pellenuii kpaeBbix 3azad Jupuxie, Heiimana u ITyankape ais 060061ienuii ypasuenus Jlamiaca B aHU30-
TPOTIHBIX U HEOAHOPOHBIX CPe/lax.

Kmoueswie cnosa: kpacevie sadauu Tumwbepma, Jupuxne, Hetimana u Iyanxape, ypasnenus Bexvmpamu, xea-
SUKOHpOPMIBLE PYHKUUL, Y2L060T NPpedel, Kea3uzunepboIUueckoe Kpaegoe ycrosue, 102apupmMuiueckas eMKoCmb.
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