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The subalgebra A of a Leibniz algebra L is self-idealizing in L, if A =1, (A) . In this paper we study the structure
of Leibniz algebras, whose subalgebras are either ideals or self-idealizing. More precisely, we obtain a description
of such Leibniz algebras for the cases where the locally nilpotent radical is Abelian non-cyclic, non-Abelian non-
cyclic, and cyclic of dimension 2.
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Let L be an algebra over a field F with two binary operations + and [—,—]. Then L is a left
Leibniz algebra, if it satisfies the left Leibniz identity

[[a,b],c] =[d, [b,C]]—[b, [Cl,C]]

forall ab,ceL .

Leibniz algebras appeared first in the paper of A. Blokh [1], in which he called them the
D-algebras. However, in that time, the work was not in demand, and it had not been properly
developed. A real interest to Leibniz algebras appears only after two decades. The term “Leib-
niz algebra” appeared in the book of J.-L. Loday [2], and article [3]. In [4], J.-L. Loday and
T. Pirashvili began a study of the properties of Leibniz algebras. The theory of Leibniz algebras
was developed very intensively in many different directions. Some of the results of this theory
were presented in book [5]. Note that the Lie algebras are a partial case of Leibniz algebras.
Conversely, if L is a Leibniz algebra, in which [a,a]=0 for every aeL, then it is a Lie algebra.
Thus, the Lie algebras can be characterized as anticommutative Leibniz algebras. In this regard,
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a parallel with associative structures, such as, for example, groups and associative rings, comes
to mind. There, we can see a significant difference between Abelian and non-Abelian groups, as
well as between commutative and non-commutative rings. The differences between Lie algebras
and Leibniz algebras became visible, when one considers the first natural types of Leibniz al-
gebras. For example, cyclic Lie algebras have dimension 1, however the structure of cyclic Leib-
niz algebras is much more sophisticated. The structure of cyclic Leibniz algebras was described
in paper [6]. Another example of this sort: Lie algebras, every subalgebra of which is an ideal, is
Abelian ones. But, in the case of Leibniz algebras, we have a different more complex case. Leibniz
algebras, whose subalgebras are ideals, were described in paper [7]. We face the same situation,
when studying other types of Leibniz algebras (see, e.g., [8—11]).

In the current paper, the term “Leibniz algebra” stands for a left Leibniz algebra that is not
a Lie algebra.

We start with some definitions and remarks.

Let L be a Leibniz algebra over a field F, and let A and K be subalgebras of L. The left idea-
lizer of A in K is defined by the following rule:

[ (A)={x eK |[x,a]le Aforallac A}.

We note that the left idealizer of A in K is a subalgebra of K.
Similarly, the right idealizer of A in K is defined by the following rule:

15 (A= {x eK |[a,x]e A forallac A}.

Unlike a left idealizer, the right idealized of A in K does need not to be a subalgebra. This is shown
in the corresponding example from [12, Example 1.7].
The idealizer of A in K is defined by the following rule:

I (A)={x eK |[x,a],la,x]cAforallac A} =T (A) NI (A) .

We note that the idealizer of A in K is a subalgebra of K.
For an arbitrary subalgebra A of a Leibniz algebra L, we have the following ascending series:

A =A0 <A1 < '"A(X. <A(X+1 < ...A,Y

where A =1, (A), A, =1;(A,) forall ordinals o,

AFUA”

p<hi

for all limit ordinals &, and A, =1; (A, ). This series is called the upper idealized series of A'in L.
If y=1, then we obtain the following two cases:

The following two types of subalgebras correspond to these two cases: A is an ideal of L or A is
self-idealizing in L (i.e., A =I; (A) ). Therefore, the following natural question appears: what is a
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Leibniz algebra, every subalgebra of which either is an ideal or self-idealizing? This paper shows
a description of such Leibniz algebras.

The first type of such algebras is the Leibniz algebras, whose subalgebras are ideals. These
algebras were described in [7].

The left (vespectively, right) center £ (L) (respectively, ¢"™" (L)) of a Leibniz algebra L
is defined by the rule:

g (Ly={xeL |[x,y]=0foreachy e L)}
(respectively,
8" (Ly={xeL|[y,x]=0foreachy eL}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.
The right center is a subalgebra of L, and, in general, the left and right centers are different. They
even may have different dimensions (see, e.g., [13] or [14]).

The center {(L) of L is defined by the rule:

CL)y={xeL|[x,y]=[y,x]=0foreachy eL}.

We note then (L) is an ideal of L.

A Leibniz algebra L is called extraspecial, if it satisfies the following condition: the center
C(L) is non-trivial and has dimension 1; L /(L) is Abelian. An extraspecial algebra E is called a
strong extraspecial algebra, if [x,x]#0 for each x ¢ {(F).

Leibniz algebra L, whose subalgebras are ideals, has the following structure: L =E ®Z , where
Z is a subalgebra of the center of L, and E is a strong extraspecial algebra [7].

Let L be a Leibniz algebra over a field F. Then L includes the greatest locally nilpotent ideal
[15, Corollary C1]. This ideal is called the locally nilpotent radical of L and will be denoted
by Ln(L).

Every Leibniz algebra L possesses the following specific ideal. Denote, by Leib(L), the
subspace generated by all elements [q, a], a€ L. It is possible to prove that Leib(L) is an ideal
of L. The ideal Leib(L) is called the Leibniz kernel of L.

We note that L /Leib(L) is a Lie algebra. Conversely, if H is an ideal of L such that L /H is
a Lie algebra, then Leib(L)<H.

The study of Leibniz algebras, whose subalgebras are either ideals or self-idealizing ones,
consists of a few stages. At the first stage, we study Leibniz algebras, whose locally nilpotent
radical is Abelian and non-cyclic.

Theorem 1. Let L be a Leibniz algebra, whose subalgebras are either ideals or self-idealizing
ones. Suppose that the locally nilpotent radical A of L is Abelian. If A is non-cyclic, then the following
conditions hold:

(i) A=¢(L);

(ii) L=A®W where Wis a subalgebra of dimension 1, W =Fw, W =1, (W),

(iii) there exists a non-zero element € F such that [w,a]l=ca forevery aeA.

Conversely, if a Leibniz algebra L satisfies these conditions, then every subalgebra of L is an
ideal of L or self-idealizing.
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At the next stage, it is natural to study the case where the locally nilpotent radical is non-
Abelian and non-cyclic. Here, we have the following results.

Theorem 2. Let L be a Leibniz algebra over a field F, whose subalgebras are either ideals or
self-idealizing. Suppose that L #In(L), Ln(L) is a non-cyclic non-Abelian subalgebra. If
[Ln(L),Ln(L)]< (L), then char(F) =2, and the following conditions hold:

(i) K =Ln(L) is strong extraspecial, moreover |x,x]#0 foreach x ¢ Leib(L);

(ii) [K,K]=C(L)=Leib(L);

(iii) L =K+<v >, where [v,0]=nz for some non-zero element neF , [v +{(K),x+{(K)]=
=x+C(K) foreach x e K\ {(K).

Example 1. Let L be a Leibniz algebra over a field F, char(F)=2, and let L be generated by
the elements a, b, v such that

la,al=z, [b,b]=0z, [v,0]=nz,

[z,z]=[z,al=[a z]=[z,b]=[b,z] =[z,d]=]d,z] =0,
[a,b]=[b,a]=0, [a,0]=a, [0,a]=a+z,

[b,o]=b, [0,b]=b+z.

Moreover, the polynomials X? +c and X2 +n have no root in a field F. It is possible to check that
L is a Leibniz algebra, whose subalgebras are either ideals or self-idealizing.

Theorem 3. Let L be a Leibniz algebra over a field F, whose subalgebras are either ideals or self-
idealizing. Suppose that L #1n(L)=K is non-cyclic and non-Abelian. If {(L) does not include
[K, K], then the following conditions hold:

(i) char(F)=2;

(i) every subalgebra of K is an ideal of L;

(iii) K is a strong extraspecial subalgebra;

(iv) [K,K]|=¢((K)=Leib(L)=<z > has dimension 1;

(v) L=K+<v> where [v+{(K),x+{(K)|=x+(K) for each x e K\{(K), [v,z]=22
and [v,v]=nz forsome neF (m can be zero).

We say that a field Fis 2-closed, if a polynomial X2 +a e F[X] has a root in F for every non-
zero element o e F . We note that every finite field F of characteristic 2 is 2-closed. As a co-
rollary, we obtain that every locally finite field F of characteristic 2 is 2-closed.

Corollary 1. Let L be a Leibniz algebra over a field F, whose subalgebras are either ideals or
self-idealizing. Suppose that char(F)=2, L #Ln(L), and Ln(L) is non-Abelian. If F is 2-closed,
then Ln(L) is cyclic.

Thus, the next natural step is the consideration of the case where the locally nilpotent ra-
dical is cyclic. We note that, in this case, it has a dimension 1 or 2. The following theorem describes
the second case.

Theorem 4. Let L be a Leibniz algebra over a field F, whose subalgebras are either ideals or self-
idealizing. Suppose that Ln(L) is a cyclic subalgebra having dimension 2. Then either L #Ln(L) or
char(F)=2 and L has a basis {z,a,0} such that |z,z]=|z,a]=|a z]=|z,v]=[v,2]=0, |a,a]=z,
[v,0]=nz, [v,al=a+rz, [a,0]=a+pz, A, neF , and a polynomial X* +(n+1)X +n has no
root in F.
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We can show the example of a Leibniz algebra satisfying the conditions of Theorem 4.

Example 2. Let L be a Leibniz algebra over a field F, where char(F) =2, and Fis not 2-closed.
In F, choose an element n such that a polynomial X2 +mn has no root in F. Let {z,a,0} be a
basis of L. Define the operation [—,—] in the following way:

[z,z]=|z,a]l=a,z]=z,v]=[v,2]=0, [aq,a]=z, [v,v]=nz, [v,a]=[a,v]=a.

It is possible to check that L is a Leibniz algebra, in which every subalgebra is either an ideal
or self-idealizing.

Proposition. Let L be a Leibniz algebra over a field F, whose subalgebras are either ideals
or self-idealizing. If Ln(L) has dimension 1, then L /Ln(L) does not include Abelian subalgebras
of dimension 2.

The case where the dimension of the locally nilpotent radical is 1 is reduced to the study of
Lie algebras, whose Abelian subalgebras have dimension 1. In this connection, we note that the
infinite-dimensional Lie algebras whose proper subalgebras have dimension 1 are some analogs
of the Tarski Monster in group theory. The problem of the existence of such Lie algebras is one
of the most interesting and difficult unsolved problems in the general theory of Lie algebras.
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[TPO BIIVINB [JIEAJIIB TA CAMOIJIEAJIISOBHUX
HIJAJTEBP HA BYIOBY AJITEBP JIEMBHIIIA

[Miganre6pa A anreGpu Jleiibnina L € camoineanizosroio B L, sikimo A =1, (A). Busueno Gynosy anre6p Jleii6-
Hina, mganre6pu sxux abo € igeanamu, abo camoigeanizosui. Tounime, ogepKaHO OIIKMC TAKUX aaredp I BU-
NaJIKiB, KOJIM JIOKATbHO HiJBIIOTEHTHUH paauKan abe/eBuil HeUKIIYHUH, HeaOeleBurii HeIMKIUHIH, a TaKOXK
NUKJITIHII BUMIPHOCTI 2.

Kntouosi crosa: anzebpa Jleibniya, ioean, idearizamop, camoideanizoena nioanzebpa.
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