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In the spherical space the curvature of the tetrahedron’s faces equals 1, and the curoature of the whole tetra-
hedron is concentrated into its vertices and faces. The intrinsic geometry of this tetrahedron depends on the value o.
of faces angle, where n/3 < a. < 2n/3. The simple (without points of self-intersection) closed geodesic has the type
(p,q) on a tetrahedron, if this geodesic has p points on each of two opposite edges of the tetrahedron, q points on
each of another two opposite edges, and (p+q) points on each edges of the third pair of opposite one. For any cop-
rime integers (p,q), we present the number o, , @3 <o, <2n/3) such that, on a regular tetrahedron in the
spherical space with the faces angle of value o > o, , there is no simple closed geodesic of type (p.q)

Kniouosi crosa: closed geodesic, regular tetrahedron, spherical space.

In 1905 H. Poincaré conjectured that, on a smooth convex surface in three-dimensional Eucli-
dean space, there exists a simple (without points of self-intersection) closed geodesic. In 1929,
L. Lyusternik and L. Shnirelman proved that at least three simple closed geodesics exist on a
compact simply-connected two-dimensional Riemannian manifold [1, 2]. It is natural to consider
properties of geodesic lines in spaces of negative and positive curvatures. From H. Huber’s
works [3, 4] it is known that, on a complete hyperbolic surface (two-dimensional Riemannian
manifold of constant curvature -1) of finite area, the number of all closed geodesics of length
not greater than L is of order ¢"/L as L tends to infinity. . Rivin and M. Mirzakhani proved that,
on a hyperbolic surface of genus g with n points at infinity (cusps), the number of simple closed
geodesics of length bounded above by L is asymptotic to the constant times L% " when L
goes to infinity [5, 6]. From the results of V. Toponogov [7], it follows that, on a complete
simple-connected regular two-dimensional Riemannian manifold of Gaussian curvature > k& > 0,
a simple closed geodesic has the length not greater than 21 /+/k . V. Vaigant and O. Matukevich
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proved that, on such surface a geodesic line of length not less than 3r //k has a point of self-
intersection [8].

Properties of geodesics on the non-smooth surfaces, especially on convex polyhedra, are also
investigated. A geodesic is a curve such that any sufficiently small subarc of this curve realizes
the shortest path between endpoints of this subarc. On a convex polyhedron, the geodesic is rea-
lized by the straight line segment within any face, the geodesic does not pass through the vertices
of the polyhedron, and the geodesic forms the equal angles with an edge in the adjacent faces.

D. Fuchs and K. Fuchs supplemented and systemized the results about closed geodesics
on regular polyhedra in three-dimensional Euclidean space [9, 10]. V. Protasov described the
structure of simple closed geodesics on a simplex in three-dimensional Euclidean space and found
the estimation the number of these geodesics depending on the greatest deviation from = of
the sum of the face’s angles at the vertices of a simplex [11].

A pair of coprime integers (p,q) is called a type of a simple closed geodesic on a tetrahedron,
if this geodesic has p points on each of two opposite edges of the tetrahedron, ¢ points on each
of another two opposite edges, and (p+¢q) points on each edges of the third pair of opposite one.

It is known that, on a regular tetrahedron in Euclidean space, any closed geodesic has no
points of self-intersection, and it is uniquely characterized by the pair of coprime integers (p,q).
Moreover, for any coprime integers (p,q), there exist infinitely many simple closed geodesics
of type (p,q) on the tetrahedron such that their segments are parallel to each other within a tet-
rahedron’s face. The length of the closed geodesic of type (p,q) on the tetrahedron with the
edges of value 1 is equal to

L=2Jp*+pq+q* . (1

In work [12], simple closed geodesics on regular tetrahedra in hyperbolic space was stud-
ied. In this space the curvature of the tetrahedron’s faces is equal to -1, so the curvature of
the tetrahedron concentrates both on its vertices and its faces. The intrinsic geometry of this
tetrahedron depends on the value o of its face’s angle, that satisfies the inequality 0 < a < /3.
It is proved that on a regular tetrahedron in hyperbolic space for any coprime integers (p,q),
0 < p < g, there exists unique, up to the rigid motion of the tetrahedron, simple closed geodesic
of type (p,q). These geodesics exhaust all simple closed geodesics on a regular tetrahedron in hy-
perbolic space. Furthermore, on this tetrahedron, the number of simple closed geodesics of length
bounded by L is asymptotic to constant (depending on o) times L?, when L tends to infinity.

In this work we consider regular tetrahedra in the spherical space. In this case, the curva-
ture of a tetrahedron’s face is equal to 1, and the curvature of the tetrahedron also concentrates
on its vertices and its faces. The intrinsic geometry of a tetrahedron in the spherical space de-
pends on the value a of the face’s angle and n/3 < o < 2r/3. The length a of the tetrahedron’s
edge is equal to

cos .
a = arccos [—) . (2)
1-cosa

If o = 21t/3, then the tetrahedron coincides with the unit two-dimensional sphere. Hence,
there are infinitely many simple closed geodesics on it, and they are the great circles of the sphere.
In the following, we consider that /3 < o < 2r/3.
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Lemma 1. The length of a simple closed geodesic on a regular tetrahedron in the spherical
space is less than 2.

It is possible to prove Lemma 1 exploring the structure of a simple closed geodesic on the
regular tetrahedron and considering the special development of the tetrahedron along this geo-
desic on the unit two-dimensional sphere. However, Lemma 1 could be considered as the parti-
cular case of the result proved by Alexander A. Borisenko [13] about the generalization of the
Toponogov theorem [14] to the case of two-dimensional Alexandrov space.

We prove the following statement.

Theorem 1. Let (p,q) be a pair of coprime integers. If the value o satisfies the inequality

2 2

+ pq +

o>2 arcsin\/ f Pa 26] R 3)
4(p"+pg+q’)-m

then, on a regular tetrahedron with face’s angle o in spherical space there is no simple closed
geodesic of type (p,q).

Proof. Let A;A,A;A, be a regular tetrahedron in the spherical space with the face’s angle
a, and let y be a simple closed geodesic of type (p,g) on it. A tetrahedron’s face is isometric to
the convex regular triangle bounded by the shortest geodesic arcs on a unit two-dimensional
sphere. Consider the unit sphere containing the face A;A,A,. Construct the Euclidean plane IT
passing through the vertices A; A,and A,. The intersection of the sphere with IT s a small cir-
cle. Build a ray starting at the sphere’s center O and passing through a point at the triangle
A A,A,. This ray intersects the plane IT, so we get the geodesic map between the sphere and
the plane IT. The image of the spherical triangle A;A,A,is the triangle A A A,A, at the Eucli-
dean plane I'T. The edges of A A A,A, are the chords joining the vertices of the spherical triangle.
From (2), it follows that the length a of the plane triangle’s edge equals

o
,Mgn?5—1
a=4+— < (4)

.o
sin—
2

The segments of the geodesic y lying inside A;A,A, are mapped into the straight line seg-
ments inside A A A,A,.

In the similar way, the other tetrahedron faces A,A4,A,,
A,A,A,, and A|A A, are mapped into the plane triangles A A,A,A
A AAA,, and A A|A,A,. Since the spherical tetrahedron is re-
gular, the constructed plane triangles are equal. We can glue
them together identifying the edges with the same labels. Hence,
we obtain the regular tetrahedron in the Euclidean space. Since
the segments of y are mapped into the straight line segments
within the plane triangles, then these straight line segments
form the broken line ¥ on the regular Euclidean tetrahedron,
and ¥y passes through the tetrahedron’s edges at the same or-
der as the simple closed geodesic of type (p,q). Fig. 1
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Fig. 2

Let us show that the length of y is greater than the length of ¥. Consider an arc MN of the
geodesic y within the face A;A,A,. The segments OM, ON intersect the plane IT at the points
M, N, respectively. The stralght hne segment MN lying into A A AyA4 is the image of the arc
MN under the geodesic map (Fig. 1). Suppose that the length of the arc MN is equal to 2¢. Then
the length of the segment MN is equal to 2sin¢. Thus, the length of any arc of y is greater than
the length of its image on 7.

Consider the development of the Euclidean tetrahedron along the broken line ¥. Since ¥
passes through the tetrahedron’s edges at the same order as the simple closed geodesic of type
(p,q). Then there is a straight line segment inside this development that corresponds to the simple
closed geodesic p of type (p,q) on this tetrahedron. From (1) and (4), it follow that the length of
u is equal to

o
1/4sin25—1
2 2
Lu=2«/ B

p tpgtq "
sin—
2

Thus, we obtain that the length of the simple closed geodesic y on the regular tetrahedron in
the spherical space is greater than the length of the broken line ¥ on the regular tetrahedron
in the Euclidean space, which is not less than the length of the simple closed geodesic p on the
same Euclidean tetrahedron. Hence, the length of y is greater than L,

From Lemma 1, it follows that if o fulfils the inequality

1/4sin28—1
2 [ .2 2 2

P +pq+q —a>2n, ()

sin —
2

then the necessary condition for the existence of the simple closed geodesic of type (p,g) on a
regular tetrahedron with face’s angle a in spherical space is failed.
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Fig.3

Hence, after modifying (5), we get that if

. p*+pa+q’
o, > 2arcsin 5 5 5
4(p +pg+q°)—m

then there is no simple closed geodesic of type (p,g) on the tetrahedron with face’s angle o in
spherical space. Theorem 1 is proved.

Corollary 1. On a regular tetrahedron in the spherical space, there exist the finite number
of simple closed geodesics.

If the numbers (p,q) tends to infinity, then

\/ P’ +pa+q’ n

4(p*+pq+q’)-n* 3

From (3), it follows that a simple closed geodesic of type (p,q), where (p,q) are large,
could exist on a regular tetrahedron with face’s angle close to /3.

In addition, consider two particular cases.

Lemma 2. On a regular tetrahedron with the face’s angle o such that n/3 < o < 21/3, there
exists three simple closed geodesics of type (0,1).

These geodesics coincide up to the rigid motion of the tetrahedron.

A geodesic of type (0,1) consists of four segments connecting the midpoints of four edges
sequentially and doesn’t pass through a pair of opposite edges of the tetrahedron (Fig. 2).

Moreover, if the value of face’s angle of the regular tetrahedron satisfies /2 < a <2 /3,
then this tetrahedron has only three geodesics of type (0,1) and doesn’t have other ones.

Lemma 3. On a regular tetrahedron with the face’s angle o such that n/3 < o < 1/2, there
exist three simple closed geodesics of type (1,1).

These geodesics also coincide up to the rigid motion of the tetrahedron (Fig. 3).

lim 2arcsin
P, g
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HEOBXIZTHA YMOBA ICHYBAHH TPOCTOI BAMKHEHOI TEO/IE3UYHOI
HA ITPABMJIbHOMY TETPAE/IPI Y COEPMTYHOMY ITPOCTOPI

Y chepuunomy mpocTopi KpUBWHA TpaHeil TeTpaenpa A0PiBHIOE 1, i KpUBMHA YChOTO TeTpaeapa 30cepeisKeHa
SK y HioTo BepIIMHAX, TaK i Ha TPaHAX. BHYTpIMIHA TeoMeTpis MPaBUIBHOTO TeTpaesipa y chepuIHOMY ITPOCTOPI
3aJIEXKUTh BiJI BEIMYMHU o KyTa ioro rpati, e ©/3 < o < 21/3. [Ipocta (6e3 camoriepeTrHy) 3aMKHEHa Teoie-
3UYHA Ha TeTpaeipi Ma€ Tuil (p,q), AKIIO I FeoJe3UYHa IIEPETUHAE Y P TOUKAX OJIHY [1apy IPOTUIEKHUX pebep
TeTpae/pa, y ¢ TOYKax — IHIIY mapy MPOTHIEKHUX pebep TeTpaenpa i y (p+q) Toukax — TpeTio mapy IpoTH-
JeskHUX pebep Tetpaenpa. [lokazano, Mo I KOKHOI APy B3AEMHO MPOCTUX HATYPATbHUX uucen (p,q) icHye
TaKe 4ncno o, (n/3 < o, , < 21/3), 1110 Ha IPaBUIBHOMY TeTpaepi y chepuaHOMY IIPOCTOPi 3 KYTOM TPaHi Be-
JITYMHE 0L > O, He iCHye TIPOCTOI 3aMKHEHOI Teo/1e3nyHoi Tty (p,q).

Kmouosi cnoea: samxieni zeodesuuni, npasuiviuil mempaeop, chpepuunuii npocmip.
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