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In 1905 H. Poincaré conjectured that, on a smooth convex surface in three-dimensional Eucli-
dean space, there exists a simple (without points of self-intersection) closed geodesic. In 1929, 
L. Lyusternik and L. Shnirelman proved that at least three simple closed geodesics exist on a 
compact simply-connected two-dimensional Riemannian manifold [1, 2]. It is natural to con sider 
properties of geodesic lines in spaces of negative and positive curvatures. From H. Huber’s 
works [3, 4] it is known that, on a complete hyperbolic surface (two-dimensional Riemannian 
manifold of constant curvature -1) of finite area, the number of all closed geodesics of length 
not greater than L is of order eL/L as L tends to infinity. I. Rivin and M. Mirzakhani proved that, 
on a hyperbolic surface of genus g with n points at infinity (cusps), the number of simple closed 
geodesics of length bounded above by L is asymptotic to the constant times L6g—6+2n, when L 
goes to infinity [5, 6]. From the results of V. Toponogov [7], it follows that, on a complete 
simple-connected regular two-dimensional Riemannian manifold of Gaussian curvature  k > 0, 
a simple closed geodesic has the length not greater than 2 / kπ . V. Vaigant and O. Matukevich 

https://doi.org/10.15407/dopovidi2020.10.009

UDC 514.774.8

D.D. Sukhorebska
B.I. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine, Kharkiv
E-mail: suhdaria0109@gmail.com, sukhorebska@ilt.kharkov.ua

Necessary condition for the existence of a simple closed 
geodesic on a regular tetrahedron in the spherical space
Presented by Corresponding Member of the NAS of Ukraine A.A. Borisenko

In the spherical space the curvature of the tetrahedron’s faces equals 1, and the curvature of the whole tetra-
hedron is concentrated into its vertices and faces. The intrinsic geometry of this tetrahedron depends on the value α 
of faces angle, where π/3 < α  2π/3. The simple (without points of self-intersection) closed geodesic has the type 
(p,q) on a tetrahedron, if this geodesic has p points on each of two opposite edges of the tetrahedron, q points on 
each of another two opposite edges, and (p+q) points on each edges of the third pair of opposite one. For any cop-
rime integers (p,q), we present the number αp, q (π/3 < αp, q < 2π/3) such that, on a regular tetrahedron in the 
spherical space with the faces angle of value α > αp, q, there is no simple closed geodesic of type (p,q)
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proved that, on such surface a geodesic line of length not less than 3 / kπ  has a point of self-
intersection [8].

Properties of geodesics on the non-smooth surfaces, especially on convex polyhedra, are also 
investigated. A geodesic is a curve such that any sufficiently small subarc of this curve realizes 
the shortest path between endpoints of this subarc. On a convex polyhedron, the geodesic is rea-
lized by the straight line segment within any face, the geodesic does not pass through the vertices 
of the polyhedron, and the geodesic forms the equal angles with an edge in the adjacent faces.

D. Fuchs and K. Fuchs supplemented and systemized the results about closed geodesics 
on regular polyhedra in three-dimensional Euclidean space [9, 10]. V. Protasov described the 
structure of simple closed geodesics on a simplex in three-dimensional Euclidean space and found 
the estimation the number of these geodesics depending on the greatest deviation from π of 
the sum of the face’s angles at the vertices of a simplex [11].

A pair of coprime integers (p,q) is called a type of a simple closed geodesic on a tetrahedron, 
if this geodesic has p points on each of two opposite edges of the tetrahedron, q points on each 
of another two opposite edges, and (p+q) points on each edges of the third pair of opposite one. 

It is known that, on a regular tetrahedron in Euclidean space, any closed geodesic has no 
points of self-intersection, and it is uniquely characterized by the pair of coprime integers (p,q). 
Moreover, for any coprime integers (p,q), there exist infinitely many simple closed geodesics 
of type (p,q) on the tetrahedron such that their segments are parallel to each other within a tet-
rahedron’s face. The length of the closed geodesic of type (p,q) on the tetrahedron with the 
edges of value 1 is equal to

2 22L p pq q= + + . (1)

In work [12], simple closed geodesics on regular tetrahedra in hyperbolic space was stud-
ied. In this space the curvature of the tetrahedron’s faces is equal to -1, so the curvature of 
the tetrahedron concentrates both on its vertices and its faces. The intrinsic geometry of this 
tetrahedron depends on the value α of its face’s angle, that satisfies the inequality 0 < α < π/3. 
It is proved that on a regular tetrahedron in hyperbolic space for any coprime integers (p,q), 
0  p < q, there exists unique, up to the rigid motion of the tetrahedron, simple closed geodesic 
of type (p,q). These geodesics exhaust all simple closed geodesics on a regular tetrahedron in hy-
perbolic space. Furthermore, on this tetrahedron, the number of simple closed geodesics of length 
bounded by L is asymptotic to constant (depending on α) times L2, when L tends to infinity.

In this work we consider regular tetrahedra in the spherical space. In this case, the curva-
ture of a tetrahedron’s face is equal to 1, and the curvature of the tetrahedron also concentrates 
on its vertices and its faces. The intrinsic geometry of a tetrahedron in the spherical space de-
pends on the value α of the face’s angle and π/3 < α  2π/3. The length a of the tetrahedron’s 
edge is equal to 

cos
arccos

1 cos
a

α⎛ ⎞
= ⎜ ⎟− α⎝ ⎠

.  (2)

If α = 2π/3, then the tetrahedron coincides with the unit  two-dimensional sphere. Hence, 
there are infinitely many simple closed geodesics on it, and they are the great circles of the sphere. 
In the following, we consider that π/3 < α < 2π/3.
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Lemma 1. The length of a simple closed geodesic on a regular tetrahedron in the spherical 
space is less than 2π.

It is possible to prove Lemma 1 exploring the structure of a simple closed geodesic on the 
regular tetrahedron and considering the special development of the tetrahedron along this geo-
desic on the unit two-dimensional sphere. However, Lemma 1 could be considered as the parti-
cular case of the result proved by Alexander A. Borisenko [13] about the generalization of the 
Toponogov theorem [14] to the case of two-dimensional Alexandrov space.

We prove the following statement.
Theorem 1. Let (p,q) be a pair of coprime integers. If the value α satisfies the inequality

2 2

2 2 2
2arcsin

)4(

p pq q

p pq q

+ +
α >

+ + − π
,   (3)

then, on a regular tetrahedron with face’s angle α in spherical space there is no simple closed 
geodesic of type (p,q).

Proof. Let A1A2A3A4 be a regular tetrahedron in the spherical space with the face’s angle 
α, and let γ be a simple closed geodesic of type (p,q) on it. A tetrahedron’s face is isometric to 
the convex regular triangle bounded by the shortest geodesic arcs on a unit two-dimensional 
sphere. Consider the unit sphere containing the face A1A2A3. Construct the Euclidean plane Π 
passing through the vertices A1, A2 and A3. The intersection of the sphere with Π is a small cir-
cle. Build a ray starting at the sphere’s center O and passing through a point at the triangle 
A1A2A3. This ray intersects the plane Π, so we get the geodesic map between the sphere and 
the plane Π. The image of the spherical triangle A1A2A3 is the triangle Δ A1A2A3 at the Eucli-
dean plane Π. The edges of Δ A1A2A3 are the chords joining the vertices of the spherical triangle. 
From (2), it follows that the length a  of the plane triangle’s edge equals

24sin 1
2

sin
2

a

α
−

=
α

 .  (4)

The segments of the geodesic γ lying inside A1A2A3 are mapped into the straight line seg-
ments inside Δ A1A2A3.

In the similar way, the other tetrahedron faces A2A3A4, 
A2A4A1, and A1A3A4 are mapped in to the plane triangles Δ A2A3A4, 
Δ A2A4A1, and Δ A1A3A4. Since the spherical tetrahedron is re-
gular, the constructed plane triangles are equal. We can glue 
them together identifying the edges with the same labels. Hence, 
we obtain the regular tetrahedron in the Euclidean spa ce. Since 
the segments of γ are mapped into the straight line segments 
within the plane triangles, then these straight line segments 
form the broken line γ  on the regular Euclidean tetra hedron, 
and γ  passes through the tetrahedron’s edges at the same or-
der as the simple closed geodesic of type (p,q). Fig. 1
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Let us show that the length of γ is greater than the length of γ . Consider an arc MN of the 
geodesic γ within the face A1A2A3. The segments OM, ON  intersect the plane Π at the points 
M , N , respectively. The straight line segment MN   lying into Δ A1A2A3 is the image of the arc 
MN under the geodesic map (Fig. 1). Suppose that the length of the arc MN is equal to 2φ. Then 
the length of the segment MN   is equal to 2sinφ. Thus, the length of any arc of γ is greater than 
the length of its image on γ .

Consider the development of the Euclidean tetrahedron along the broken line γ . Since γ  
passes through the tetrahedron’s edges at the same order as the simple closed geodesic of type 
(p,q). Then there is a straight line segment inside this development that corresponds to the simple 
closed geodesic μ of type (p,q) on this tetrahedron. From (1) and (4), it follow that the length of 
μ is equal to 

2

2 2
4sin 1

22
sin

2

L p pq qμ

α
−

= + +
α

. 

Thus, we obtain that the length of the simple closed geodesic γ on the regular tetrahedron in 
the spherical space is greater than the length of the broken line γ  on the regular tetrahedron 
in the Euclidean space, which is not less than the length of the simple closed geodesic μ on the 
same Euclidean tetrahedron. Hence, the length of γ is greater than Lμ.

From Lemma 1, it follows that if α fulfils the inequality

2

2 2
4sin 1

22 2
sin

2

p pq q

α
−

+ + > π
α

, (5)

then the necessary condition for the existence of the simple closed geodesic of type (p,q) on a 
regular tetrahedron with face’s angle α in spherical space is failed.

Fig. 2



13ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2020. № 10

Necessary condition for the existence of a simple closed geodesic on a regular tetrahedron in the spherical space

Hence, after modifying (5), we get that if 

2 2

2 2 2
2arcsin

4( )

p pq q

p pq q

+ +
α >

+ + − π
,

then there is no simple closed geodesic of type (p,q) on the tetrahedron with face’s angle α in 
spherical space. Theorem 1 is proved.

Corollary 1. On a regular tetrahedron in the spherical space, there exist the finite number 
of simple closed geodesics.

If the numbers (p,q) tends to infinity, then

2 2

2 2 2,
lim 2arcsin

34( )p q

p pq q

p pq q→∞

+ + π
=

+ + − π
.

From (3), it follows that a simple closed geodesic of type (p,q), where (p,q) are large, 
could exist on a regular tetrahedron with face’s angle close to π/3.

In addition, consider two particular cases.
Lemma 2. On a regular tetrahedron with the face’s angle α such that π/3 < α < 2π/3, there 

exists three simple closed geodesics of type (0,1).
These geodesics coincide up to the rigid motion of the tetrahedron.
A geodesic of type (0,1) consists of four segments connecting the midpoints of four edges 

sequentially and doesn’t pass through a pair of opposite edges of the tetrahedron (Fig. 2).
Moreover, if the value of face’s angle of the regular tetrahedron satisfies π/2  α < 2 π/3, 

then this tetrahedron has only three geodesics of type (0,1) and doesn’t have other ones.
Lemma 3. On a regular tetrahedron with the face’s angle α such that π/3 < α < π/2, there 

exist three simple closed geodesics of type (1,1).
These geodesics also coincide up to the rigid motion of the tetrahedron (Fig. 3).

I am grateful to Prof. Alexander A. Borisenko for setting the problem and for the valuable dis-
cussion.
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НЕОБХІДНА УМОВА ІСНУВАННЯ ПРОСТОЇ ЗАМКНЕНОЇ ГЕОДЕЗИЧНОЇ 
НА ПРАВИЛЬНОМУ ТЕТРАЕДРІ У СФЕРИЧНОМУ ПРОСТОРІ

У сферичному просторі кривина граней тетраедра дорівнює 1, і кривина усього тетраедра зосереджена 
як у його вершинах, так і на гранях. Внутрішня геометрія правильного тетраедра у сферичному просторі 
залежить від величини α кута його грані, де π/3 < α  2π/3. Проста (без самоперетину) замкнена геоде-
зична на тетраедрі має тип (p,q), якщо ця геодезична перетинає у p точках одну пару протилежних ребер 
тетраедра, у q точках — іншу пару протилежних ребер тетраедра і у (p+q) точках — третю пару проти-
лежних ребер тетраедра. Показано, що для кожної пари взаємно простих натуральних чисел (p,q) існує 
таке число αp, q (π/3 < αp, q < 2π/3), що на правильному тетраедрі у сферичному просторі з кутом грані ве-
личини α > αp, q не існує простої замкненої геодезичної типу (p,q).

Ключові слова: замкнені геодезичні, правильний тетраедр, сферичний простір.


