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The article validates an approximation technique for solving multiobjective stochastic opti-
mization problems. As a generalized model of a stochastic system to be optimized, a vector
“input-random output” system is considered. Random outputs are converted into a vector of
deterministic performance/risk indicators. The problem is to find those inputs that correspond
to Pareto-optimal values of output indicators. The problem is approrimated by a sequence
of deterministic multicriteria optimization problems, where, for example, the objective vector
function is a sample average approximation of the original one, and the feasible set is a di-
screte sample approximation of the feasible inputs. Approximate optimal solutions are defined
as weakly Pareto efficient ones within some vector tolerance. Convergence analysis includes
establishing the convergence of the general approximation scheme and establishing the condi-
tions of convergence with probability one under proper requlation of sampling parameters.

Contemporary approach to the optimal decision making is based on the modeling and the optimi-
zation of systems. Any complex system can be described by an “input—output” model y = g(z,w),
where x denotes the input parameter vector from some feasible set X, w is a vector of uncertain
parameters from a set ), y is an output vector from a set Y, and ¢ is some mapping of X x 2
into Y. The model g may be given by mathematical relations, a simulation computer program
or as an output result of an optimization or other solver. The vector w of uncertain parameters
can be either deterministic or random, with distribution P. In the first case, the optimization
problem reads: LIIEISI)I f(z,g(z,w)) — rg?ea):é(, which corresponds to the so-called minimax decision-

making approach. The second case is related to the stochastic programming [1, 2|, where the

“Input-output” pairs are evaluated by means of some utility functional f(z,y,w), and a correspon-

ding optimization problem is formulated as F(x) = Ef(z, g(z,w)) — may, where E denotes the
xre

expectation over the distribution P. Note that the above stochastic programming problem already
contains a vector criterion f(z) = {f(z, g(z,w)),w € Q}, with a large number of components,
which are combined in many cases into one or more scalar indicators. The most commonly used
indicator is the average value F(z) = Ef(z, g(x,w)), along with the variance functions, probabi-
lity, quantile (VaR), and other risk indicators [3, 4]. Optimization of such indicators requires
substantial computational resources, and, in particular, the usage of parallel computing.

However, the efficient and unambiguous choice of the utility function f is not always possible.
In this case, we have to deal directly with the vector model y = g(x,w), which maps an input =
into a random vector output g(z,w). To make rational decisions, we have to define a preference
relation on the set of random vectors g(z,w). This can be done in various ways [3, 4], e.g.,
we can calculate an average output Eg(z,w) and then to use a natural deterministic preference
relation on the space Y.

Unlike standard one-criterion stochastic programming problems [1, 2|, the problem of output
vector optimization can contain nonconvex, nonsmooth, and discontinuous functions. So, the
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traditional stochastic programming methods like the gradient-type procedures [1] might not
be applicable. In this case, the random search methods, for example, evolutionary or hybrid
algorithms should be applied [5]. In case of a small dimension n of the set X C R", a simple
multiobjective random search (MRS) method can appear to be competitive. First, this method
randomly generates a cloud of points in the feasible region, and then nondominated points are
selected. Next, chiefly in a vicinity of the chosen nondominated points, new random points
are generated, and again nondominated points are selected, and so on. Efficiency of the search
is boosted due to the fact that the new points are generated in perspective areas. Remark
that the MRS method naturally admits the parallel and interactive implementation, which is
essential for stochastic multiobjective problems. In case of stochastic multicriteria optimization,
the additional difficulty consists in proper numerical evaluation of the vector objective function
that contains multidimensional integrals (expectations). In the present paper, we assume that the
objective functions are estimated by statistical sampling and focus on the method convergence
analysis. The considered MRS method belongs to nonscalarizing approaches [4] and, in spite of
the used sample average approximations, is substantially different from the scalarization method
of [6]. The results of numerical experiments and applications of the MRS method to insurance
optimization problems are reported in [7, §].

2. é~<dominance and é-efficiency. The following concept appears to be useful for the control
over the accuracy, strength, and directing preferences in R™.

Definition 1. (¢-dominance and é-efficiency/optimality). The vector z; € R™ € dominates
a vector Zp € R™ if 2} > Z5 + € (componentwise), where € € R™. The subset Z*(€) of the set
Z C R™ is called €é-efficient/optimal if, for any z2° € Z*(€), there is no Z* € Z, Z* # Z, such
that 2% > 2+ €

The concept of é-efficiency was introduced in [9]. In case of € > 0, it generalizes the standard
notion of the e-optimality of a scalar optimization. It also includes the notion of weak Pareto
optimality, which corresponds to € = 0. Further various generalizations of the e-efficiency are
discussed in [10]. By adding € to a vector Z, the importance of components of Z can be controlled
(e.g., the importance of criteria in vector optimization). Namely, an increase of the ¢; component
decreases the importance of the z; component. Moreover, in contrast to [9, 10], we allow € ¢ R'!".
If € contains negative components, then the é-dominance of z; over 75 admits that some compo-
nents of z; can be somewhat smaller than the corresponding components of z5. Remark that if
the point Z* € Z is €-efficient for some sequence {R™ 3 € — 0,k = 1,2,...}, then Z* is called
a generalized efficient point (see [11, Definition 5.53|).

Let us recall some notations and definitions [12, Section 4 A], which concern the convergence
of a sequence of sets {Z; C R™i = 1,2,...}:

limsup Z; = {2: 32, € Z;,,z = liinzik},
lim'ziani = {z: 3z € Z;,z = limz;},
lilei = liminf Z; = limsup Zi.l

(2 1 9

(2
Lemma 1. (Properties of the €optimal mappings). Let the sequence of sets {Z; € R™}
converge to a compact set {Z C R™}, lim Z; = Z. Denote, by Z;(€) and Z*(€), the subsets of
(2

e-nondominated points in Z; and Z, respectively. Let lim&; = €. Then, for any &€ < €, € # €,
(3

the relations

Z*(¢) C liminf Z; (&) C limsup Z;'(&) C Z*(&)

7
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hold true, where the last inclusion, in particular, indicates that the mapping € — Z*(€) is upper
semicontinuous. Moreover, in case of a convex set Z, we have liminf Z(€) = limsup Z(€) =
p )

7
= Z*(&).
3. Approximation of multicriteria optimization problems. Consider a general multi-
criteria optimization problem,

F(z) = .. — 1
() = (1@, Fmle)} = max (1)
where the functions f;(x), i = 1,...,m, are assumed to be (semi)continuous on a compact set

X C R", and the preference relation in the criteria space R™ is set out by the nonnegative cone
RT, = {x € R™: x; >0,i =1,...,m}. The problem is to find a weak Pareto-optimal set X*
and a subset X*(€) of é-efficient points of the set € € R™.

It is easy to see that the mapping € — X*(€) is upper semicontinuous for the upper semi-
continuous vector function F(-), i.e., limsup X*(&;) C X*(€) for any sequence & — €.

(2
Let us consider also the approximations for problem (1):

Fi(z) = {fi(z),.. — i =1,2,... 2

(I’) {fl(x)7 ( )} er)rflaCX]R" ? ) 4 ) ( )

where the sequence of sets {X;} converges to the set X, limX; = X, and the sequence of
(3

vector functions {F*(z),z € X;} converges to the vector function F(z), # € X (in the sense
of Definition 2 or 3). Denote, by X/ (€,) the set of énondominated points of problem (2), i.e.,
X/ (€) is a éefficient subset of X.

Concerning F and {ﬁ i}, we assume the certain continuity and convergence properties outlined
in the following definitions.

Definition 2. (Continuous convergence of a sequence of vector functions). A sequence of
vector functions {F*(z),z € X;} is called continuously convergent to a vector function F(z),
¢ € X, if a) limX; = X, b) for any sequence X; > z; — x, lim F'(z;) = F(z) holds
(componentwise)f Z

Definition 3. (Graphical convergence from below of a sequence of vector functions). A sequ-

ence of vector-functions {ﬁ ‘(z),r € X;} is called graphically convergent from below to a vector
function F'(z), z € X, if a) lim X; = X, b) for each sequence X; 5 z; — x, limsup F*(x;) < F(x)
i i

holds (componentvvlse), and ¢) for any point x € X, there is a sequence X; 3 x; — = such that
hm F'(z;) = F(x) (componentwise).

The concepts of continuous and graphical convergence of multivalued mappings and functions
(in the latter case, epi- and hypo-convergence) were comprehensively studied in [12, Sections 6E,
6G, 7B]. Definitions 2 and 3 differ from the corresponding notions in [12]| by that the domains X
and X of functions F* and F in Definitions 2 and 3 are explicitly outlined, but the functions
in [12, Definition 5.41| are considered on a common domain X or R". In addition, Definition 3
extends the definition of the graphical convergence of scalar functions [12, 7(3), 7(9), Defini-
tion 7.1] to vector functions.

Examples of the sequences of vector functions that are graphically convergent from below.

E1. Obviously, if a sequence {F'(2),z € X;} converges continuously to {F( ),x € X}, ie,
th = X and hm F'(z;) = F(z) for any sequence X; 3 x; — , then {F'(-)} converges to

F (+) graphically.
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E2. Obviously, if all scalar components, except the first one, of {ﬁl()} converge continuously
to the corresponding scalar components of {F(-)}, and if the first component of {F*(-)} hypo-
converges to the first component of F(-), then {F*(-)} graphically converges from below to F(-).

E3. If ﬁl(x) = ﬁ(m,yi), x € X,Y 3y, — y, where ﬁ(:ﬂ,y) is componentwise upper semi-
continuous on X x Y and is continuous at y € Y for any z € X, then {F*(-,;)} graphically
converges from below to F (-,y). In particular, this case includes a stationary sequence of upper
semicontinuous vector functions F'(z) = F(z), v € X; = X.

E4. Example of the construction of a continuously convergent sequence of functions. Let
a function F (x), € X be continuous on a closed set X, and let a sequence of functions

{Fi(z),# € X; C X} be such that A;: = sup |[F'(z) — F(z)|| — 0 with i — oo. Then, for
reX;
any sequence (X; 3)x; — x, we obtain

1E (25) = F(a)ll < ||F (i) = Flaa)l| + | Fas) = )| < Ai + | F(2i) — F(a)]| = 0.

E5. If the objective vector function of problem (1) has the form of an expectation, F(z) =
_, . M;
= EF(z,w), z € X, then the sample average approximations F"'(z) = (1/M;) >  F(z,wy) can be
k=1

used instead of F(z), where {wy, k = 1,2,...} are i.i.d. observations of the random parameter w.
Terms of the uniform and, therefore, continuous convergence of the empirical estimates ﬁl(x) to
F(z) on the set X can be found in [2, Section 7.2.5]. Next, we present the sufficient conditions of
continuous convergence of discretely defined empirical functions F' to a continuous expectation
function F. Assume that the functions F(z,w) are uniformly bounded on X, ||[F(z,w)|| < M,
and, at each point x € X; of a discrete set X; C X (with the number of elements N;), an

o M;
empirical estimate F*(x) = (1/M;) > F(z,wy) such that
k=1

2M,;62
M2

Pr{||Fi(z) — F(z)|| > 6} gcexp{_ } Vo>0

is independently constructed. Such estimates follow, e. g., from the Hoeffding inequality [2, Secti-
on 7.2.8] with C' = 2m. Then A; = max |F*(z)—F(z)|| — 0 with probability one, if, for example,
TEX]

M; > aN;, a > 0, and the numerical sequence {NN;} strictly monotonically increases to infinity.
Indeed, the assertion follows from the fact that, for any § > 0, the relations

0 00 M2(52 > Ni(X(SQ
ZPr{Ai >0} < ZCNZ-eXp{—Q 2 } < ZC’Niexp{—Q e } < +o0o
i=1 i=1 i=1

hold true.
Theorem 1 (Convergence of solutions of the approximate problems (2)). Let a sequence of
sets {X;} converge to a compact set X, lim X; = X, and let a sequence of functions {F'(x),x €
(2

€ X;} graphically converge from below to a vector function ﬁ(az), x € X. Let lime; = €. Then,
(2

—

_/
for each € < ¢,

X*(&) C liminf X/ (&) C lim sup X7 (6;) € X™(e).

7
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4. Multicriteria random search (MRS) algorithm and its convergence. The next
i
multicriteria random search algorithm uses the random discrete approximations X; = (J X} of

k=1
a feasible set X and estimates F'(z), = € X;, of the objective function of (1). The algorithm
generates a random sequence of approximate solutions X, i = 1,2, ..., of task (1) as follows.

At the first iteration, the first generation of N1 points X 11s randomly generated in the set X,
the estimates Fl( ) of the objective function F(z) are built for all points € X;, and, in the
set {F(x),z € X1}, a subset {F!(z),z € X{ (&)} of all &-nondominated points is chosen.

Suppose that, at iteration 7, we have already built the set X7'. Then (preferably in a vicinity
of the set X;) a new generation of N; random points X, is generated, the estimates F Z( ) of the
objective function F(z) for all # € X; = Ui_, X}, are built, and, from the set {F'(z),z € X;},
the subset {F'(z),z € X;} of &-nondominated points is chosen. Then we proceed to iteration
1+ 1. The process continues indefinitely long or ends at reaching the limit of iterations.

Below, we formulate the conditions of convergence of the MRS algorithm. The next statement
follows from the Borel-Cantelli lemma.

Lemma 2. Let a sequence of random sets {)NQ,Z = 1,2,...} be such that X, C X with
probability one. Let, with nonzero probability p;(xz,d) > 0, the set X; intersect with any d-vicinity
of any point x € X, and let > p;(x,0) = 400 hold. Then, with probability one, limsup X; = X,

(2 (2

(S
and, thus, lim | X = X.
v k=1
Lemma 3. Let X; C X, limsup X; = X, lim& = &, and let F(z) be continuous on X and
7 7

A; = sup ||Fi(z) — F(z)|| — 0. Then, for each & < € we have
z€X;

X*(&) C liminf X*;(&) C limsup X;(¢) € X*(@).

The above lemma actually covers the case of the sample average approximation of a vector
objective function outlined in Example E5.

As a consequence of Lemmas 2 and 3, we obtain, by Theorem 1, the following result on the
convergence of a multicriteria random search algorithm to the é&nondominated set of problem (1).

Theorem 2 (convergence of the MRS algorithm). Let the vector function F(z) be continuous
on a compact set X C R™, let the random sets )?Z with positive probability p;(x,d) > 0 intersect

7 ~
with any d-vicinity of each point x € X, and let > p;i(x,0) = +o00. Denote X; = |J Xi. Let
i k=1

{ﬁl( ),x € X; C X} be a sequence of random vector functions such that, with probability one,

A; = sup |Fi(x)—F(z)|| — 0. Then, with probability one, a) all cluster points of {X; (&)} belong
zeX;

to X*(€) and b) for each point z* € X*(&), & < ¢, there is a sequence of points {x; € X; (&)}
convergent to T*.

In particular, if € > 0, then, for each weakly Pareto optimal point z* € X* C X, there is
a sequence of points {z; € X;(e)} convergent to z*. By virtue of the upper semicontinuity of
the mapping X*(€) at € = 0 for a sufficiently small vector €, the set X*(€) will appear in an
arbitrarily small neighborhood of the weakly Pareto optimal points X* = X*(0).

5. Conclusions. The article describes an approximation technology for the multicriteria
stochastic optimization of “input-random output” systems. In practice, these models are highly
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nonlinear and nonconvex. Their functioning can generally be evaluated by deterministic vector
indicators such as the means, quantiles, probabilities of reaching/exiting specified areas, etc.
Collapsing the vector indicator into a scalar one in view of its optimization is not always possible.
So, the task is to find such inputs that correspond to the Pareto-optimal performance vector
indicators. This paper validates a methodology of solving such problem by a random search with
the selection of Pareto-optimal points.
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B.B. Hopkiu

CraTuctnyHa anmpokcuMallisi 6araToKpuTepiajJbHUX 33/1a4 CTOXaCTUIHOTO
nporpaMmyBaHHS

Obezpynmosaro anpoxcumayiinut nidrid do pose’azanna 3aday 6a2amokpumMEpPiaNvHOi cmMoxac-
muuHoi onmumizayii. B axocmi yaazanrvrenot Modeai cmoxacmustoi Cucmemu, U0 onmuMi3yemv-
€, BUKOPUCTNOBYEMDBCA 8EKTOPHA Modeab muny “exrid—sunadkosut suxid”. Bunadkosi euxodu ne-
PEMBOPIOIOMBCA 8 BEKMOP JEMEPMIHOBAHUT NOKA3HUKIE ehekmuerocmi i puduky. IIpobaema noss-
2ae 8 momy, wob snatimu mi exodu, Axi eidnosidaromyv Ilapemo-onmumarvHUM 3HAGUEHHAM BULIO0-
HUT Noka3HuKie. LA 3adaua HabauiCcacmvea nocaidosHicmiIo 3aday demepminosanoi bazamoxpume-
PiaavHol onmumidayii, de, HANPUKAGD, UYiAbOBA GEKMOD-PYHKUIA € BUDIPKOBUM CePEOHIM HaAOAU-
HCEHHAM BUTIOHOT PYHKUIL, 4 ONYCMUME MHOHCUHG € JUCKPEMHUM HADAUNCEHHAM MOHCAUBUL
sxodie. Habaustceni onmumasvhi po3e’asku 8USHAMAIOMBCA AK CAGO0 ePermueni (3 0eaKkot mo-
niemio) za Ilapemo. Awnanisz 36isicnocmi exatouae 6 cebe 062pyHmMyearhs 36IHCHOCME 3a2aA40H0T
ANPOKCUMAUTTHOT CTEMU T BCTNAMOBAEHHA YMOB 30IHCHOCTME 3 TUMOBIPHICTII0 00UHUUA NPU AOEKBAM -
HOMY PE2YNIOBAHHT NAPAMEMPIE SUDIPKU.
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B.B. Hopkun

CratucTunyeckasi anmrpoKCUMaNusi MHOTOKPUTEPUAIIbHBIX 331249
CTOXACTUYECKOIro IporpaMMUpPOBaHUSA

Obocrosvieaemca annPoOKCUMAUUOHHHIT NO0T00 K PEWEHUIO 36044 MHO20KPUMEPUAALHOT, CTNOTAC-
muveckotl onmumudayuu. B xauecmee 0606wennots mModest onmumusupyemots Cmoracmuseckot
CUCTNEMDL UCTLONDIYEMCA BEKTNOPHAA MOdeat muna “6rod—cayywatinmt 6vixod”. Cayualinvie 6vixodo.
npeobpasylomcea 6 6eKmop 0emepPMUHUPOSAHHBIT Nokazamenet afiexmusnocmu u pucka. IIpobae-
MG COCTROUM 8 MOM, 4mobvl Hatmu me 6xodv, Komopwe coomsemcmeyrom Ilapemo-onmumans-
HOLM BHAYEHUAM GOILOOHBIT nokazamenetd. Ima 3a0a4a NPUOAUNCAEMCS NOCACIOBAEABHOCTDIO
3a0dad 0eMePMUHUPOBAHHOT MHOLOKDUMEPUAALHOT ONMUMUSAUUL, 20€, HANPUMED, UEACEAA GCK-
Mop-PYHKYUA ACAAEMCA GLLOOPOUHBIM CPEOHUM NPUbAUNCEHUEM UCTOOHOT PynKyuu, a donycmu-
MOE MHONCECTNEO ABAACNCA OUCKPEMMHBIM NPUOAUNCERUEM BOZMONCHBLL 8X0006. TTpubausicerntvie
ONMUMAABLHVLE PEULEHUS ONPEJEAAIOMCA KaK cAabo sfexmuservie (¢ Hexomopot mourocmvio) no
Hapemo. Anaaus crodumocmu 8kaouaem 8 ceba 060cHo8aNUEe CTOOUMOCNY 00UWel ANNPOKCUMA-
YUOHHOT CTEMDL U YCNAHOBACHUE YCAOBUL CTOOUMOCTIU C BEPOAMHOCTNDIO COUHUUA NPU GIEKEAM-
HOM PE2YAUPOBAHUL NAPAMEMPOE 6bLO0PKU.
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